NASA/CR—1998-207409 # Operational Evaluation of a Health and Usage Monitoring System (HUMS) J. Cronkhite, B. Dickson, W. Martin, and G. Collingwood Bell Helicopter Textron Inc., Fort Worth, Texas Prepared under Contract NAS2-14115 National Aeronautics and Space Administration Lewis Research Center Trade names or manufacturers' names are used in this report for identification only. This usage does not constitute an official endorsement, either expressed or implied, by the National Aeronautics and Space Administration. Available from NASA Center for Aerospace Information 7121 Standard Drive Hanover, MD 21076 Price Code: A04 National Technical Information Service 5287 Port Royal Road Springfield, VA 22100 Price Code: A04 #### **ABSTRACT** This report describes the results of a research program to evaluate structural usage monitoring and damage tolerance methodology using data collected concurrently during a helicopter flight program. The helicopter (a Bell Model 412 equipped with a Health and Usage Monitoring System (HUMS) and data recorder) was operated by Petroleum Helicopters Inc. (PHI) during the 1996 Summer Olympic Games in Atlanta, Georgia, under the FAA's Project HeliSTAR. The mission was referred to as the Atlanta Short Haul Mission (ASHM) and involved many short flights to provide pick up and delivery service at the Olympics. The usage data collected for the ASHM was used to perform fatigue life calculations and damage tolerance evaluations on selected rotor system components known as Principal Structural Elements (PSE's). The usage data from the ASHM were compared to certification data and to data from a previous study for a mission called the Gulf Coast Mission (GCM) which involved primarily long cruise flights. Although the usage was more severe for the ASHM than the GCM, the results of the comparison showed that usage monitoring would provide benefits in extending retirement times or inspection intervals, compared to certification, especially if high/low altitude effects were considered. In addition to usage monitoring evaluations, guidelines for HUMS certification are discussed along with potential economic benefits and simplified "mini-HUMS" approaches to provide low cost systems with high paybacks. # TABLE OF CONTENTS | <u>Paragraph</u> | Page | |--|------------| | ABSTRACT | v | | TABLE OF CONTENTS | V1 | | I IST OF FIGURES | V11 | | I IST OF TABLES | VIII | | 1 Introduction | 1 | | 2 Atlanta Short Haul Mission Description | | | 0 0 1 1 1 0 | 13 | | A Fotigue I ife Analysis | | | A 1 Analysis Procedure | 20 | | 4.2 Life Limitations | 20 | | 4.2 Penhase Lever Study | | | Farlier configuration | | | Padesigned configuration | 44 | | Pedesigned configuration | | | A A Analysis Results | 23 | | 5 Damage Tolerance Analysis | | | 5 1 Danhace Lever | | | 5.2 Collective Lever | | | 5.3 Main Rotor Spindle | | | 5.4 Main Potor Voke | | | 6 Magnined Load Comparison | | | 7 Sensor and Equipment Investigation | | | 7.1 Gross Weight | J/ | | 7.2 Center of Gravity | | | 7.3 Cockpit Display | 20 | | 7.4 Global Positioning System | ۵۵۵۸
۸۵ | | 8. Guidelines for Certification | 40 | | 9. Economic Impact | 45 | | 10. Mini HUMS | 44 | | 10.1 Simplified HUMS | | | 10.2 Recording Altimeter | | | 11. Conclusions | | | 12. Recommendations | | | 12 Peferences | , | # LIST OF FIGURES | Figure | Page | |--|------| | | 2 | | Figure 1.1 Data Collection and Analysis Flow | 7 | | Figure 2.1 Spectra Comparison | 14 | | Figure 2.1 Spectra Companion Figure 2.2 Flight Duration Correlation | 14 | | Figure 2.3 Cumulative Flight Duration | 18 | | Figure 3.1 Rephase Lever Geometry | 18 | | T' - 2.0 Callactive I ever Geometry | | | 70 2 2 Main Batan Chindle Geometry | / | | | | | The state of s | — - | | A A TITTLE CO. I I and a second secon | | | To A 2 Effective Hooga Danhace Lever | | | Figure 4.4 Effective Usage Collective Lever | 26 | | Figure 4.5 Effective Usage Main Rotor Spindle | 27 | | The ACTION II and Main Potor Yoke | / | | T To the Town Costion at Section A-A | | | To Co. 11 - Air Torray Continue A. A. | — / | | Figure 5.2 Collective Level Section A-A Figure 5.3 Main Rotor Spindle Section A-A | 30 | | The state of the Continue A.A. | | | | | | Figure 5.6 Collective Lever - 0.005 inch Initial Crack | 32 | | Figure 5.6 Collective Lever - 0.005 inch Initial Crack | 33 | | Figure 5.7 Collective Level - 0.013 inch Initial Crack | 33 | | Figure 5.8 Main Rotor Yoke - 0.005 inch Initial Crack | 34 | | Figure 5.10 Main Rotor Spindle - 0.015 inch Initial Crack | 35 | | Figure 6.1 Collective Boost Tube Load Comparison | 36 | | Figure 6.1 Collective Boost Tube Load Comparison | 36 | | Figure 6.2 Left Boost Tube Load Comparison | 38 | | Figure 7.1 Gross Weight Correlation | 39 | | Figure 7.2 Gross Weight Detail | 39 | | TO Compare of Convictor Correlation | | | Figure 8.1 HUMS maintenance concept | /4 | # LIST OF TABLES | <u>Table</u> | <u>Page</u> | |--|---------------| | Table 2.1 Mission Statistics | 4 | | Table 2.2 ASHM Spectrum | | | Table 2.3 Spectra Comparison | 8 | | Table 2.4 Detail Flight Record Comparison | 10 | | Table 3.1 Part Service History | 16 | | Table 4.1 Rephase Lever Calculated Fatigue Life | 24 | | Table 4.1 Rephase Lever Calculated Fatigue Life | 25 | | Table 4.2 Collective Lever Calculated Fatigue Life | 26 | | Table 4.3 Main Rotor Spindle Calculated Fatigue Life | 27 | | Table 4.4 Main Rotor Yoke Calculated Fatigue Life | 21 | | Table 5.1 Flight Hours to Critical Crack Length - 0.005 Inch Initial Crack | | | Table 5.2 Flight Hours to Critical Crack Length - 0.015 inch Initial Crack | 31 | | Table 0.1 Without Life Limitation | 43 | | Table 0.2 With Double I ife I imitation | 43 | | Table 10.1 Simplified Mini HTIMS configuration | 44 | | Table 10.2 Simplified Mini HTMS | 4J | | Table 10.2 Simplified Mini HIIMS Fatigue Life | 43 | | Table 10.4 Recording Altimeter Fatigue Life | 40 | | Table 10.5 Recording Altimeter Economics | 46 | #### 1. Introduction This report describes the results of a research program to evaluate structural usage monitoring and damage tolerance methodology using data collected concurrently during a helicopter flight program. The helicopter (a Bell Model 412 equipped with a Health and Usage Monitoring System (HUMS) and data recorder) was operated by Petroleum Helicopters Inc. (PHI) during the 1996 Summer Olympic Games in Atlanta, Georgia, as a part of Project HeliSTAR. This effort was conducted by Bell Helicopter Textron Inc. (BHTI) under the cognizance of the Federal Aviation Agency (FAA), the U.S. Army, and NASA. The helicopter was flown in what is referred to as the Atlanta Short Haul Mission (ASHM). This mission involved numerous short flights to pick up and deliver packages and freight. Data recorded during the period together with pilot flight records and maintenance records were furnished by PHI to BHTI for analysis. The results of the analysis of the ASHM were compared to results from a different type of mission, the offshore oil support Gulf Coast Mission (GCM) analyzed under a previous program (Reference 1) which involved longer level flights at cruise airspeed. The purpose of the program was to acquire usage data for the ASHM and perform component fatigue life calculations and damage tolerance evaluations for selected critical dynamic components referred to as Principal Structural Elements (PSE's). The ASHM data analysis flow is shown in Figure 1.1. The lives and inspection intervals determined for purposes of this study should not be used to draw any conclusions concerning certification or continued airworthiness of the Model 412 helicopter. The results of the project are described in the following sections: - Section 2 describes the ASHM, which is a series of short, high maneuver flights at low altitude and moderate gross weight. - Section 3
describes the four PSE's that were selected for analysis and includes the service history, e.g., failures, redesigns, configuration changes, process changes, Bulletins, Airworthiness Directives (AD's), reports and other design and manufacturing actions. - Section 4 discusses the results of the fatigue life analysis of the selected PSE's with comparisons drawn between the ASHM, the GCM, and the certification data. - Section 5 describes the results of the damage tolerance analysis performed on the selected PSE's. - Section 6 presents a comparison of the ASHM and GCM spectra applied to the certification load level survey data, and the measured loads data (control boost tube loads) from the ASHM. - Section 7 discusses the results of investigations to identify improvements to usage monitoring sensors and equipment for enhancements to future usage monitoring systems. - Section 8 discusses suggested guidelines for certification and qualification of future systems. - Section 9 addresses the economic impact results of usage monitoring for the ASHM versus the GCM. - Section 10 proposes reduced complexity alternatives that might be applied to smaller rotorcraft. Figure 1.1 Data Collection and Analysis Flow # 2. Atlanta Short Haul Mission Description HUMS data recorded during project HeliSTAR covered the period from 19 July 1996, through 1 August 1996, and contained a total of nine flying days. It should be noted that the data sample for the ASHM is limited (approximately 17 hours of flight data) compared to the approximately 450 hours of flight data processed from the GCM. Because of the limited amount of data, care should be exercised regarding the mission characteristics presented and any analysis resulting from the use of the ASHM data. The ASHM consisted mainly of flights that were of short duration, with a large number of maneuvers. The broad mission statistics are presented in Table 2.1. The mission spectrum detailing time at condition broken out by gross weight is tabulated in Table 2.2. It should be noted that Autorotation is defined, for the purpose of mission spectrum, as less than 10% combined engine torque whilst in flight. A comparison between the Certification spectrum, GCM spectrum, and the ASHM spectrum is presented in Table 2.3. The ASHM consists of a significantly higher percentage time in low to moderate speeds (0.8 and 0.9V_h) and in turning maneuvers (conditions 34 through 37) than either of the other spectra. The Gulf Coast mission consisted primarily of high-speed level flight. Both the ASHM and GCM indicate more time spent at 324 rpm than at 314 rpm while the certification spectrum assumes more time at 314 rpm. The time at condition comparison is emphasized in Figure 2.1 which presents the data sorted by descending time at condition for the ASHM. The correlation of Pilot recorded Flight duration vs. HUMS recorded Flight duration is presented in Figure 2.2. It should be noted that pilots record takeoff and landing times to the nearest minute whereas HUMS recorder has a resolution of 0.5 seconds. Consequently, a large apparent scatter in the short flight duration region may occur. The cumulative difference between the pilot-reported and the HUMS-recorded flight duration is presented in Figure 2.3. The difference does not appear to settle down to a steady value, indicating the data sample may not be large enough to be statistically viable. Ground running time is not included in the time-at-condition spectrum, but is calculated separately so that damage can be related to flight time. The certification process similarly assumes the time spent in ground running and then sums that damage into the 100 hour spectrum damage before calculating a life. A detailed flight by flight comparison between the pilot logbook data and the HUMS recorded data is presented in Table 2.4. Flight data were not recorded during the afternoon on two of the mission days, resulting in the loss of approximately 10 hours of flight data. An investigation indicated that the recorder was not operating during the missing 10 hours but did not reveal a reason for the data loss. The Quick Access data Recorder (QAR) used for the ASHM was separate from the HUMS and not representative of an integrated data recorder as would be used in a production system. Statistical methods need to be developed to account for unrecorded or corrupted data. **Table 2.1 Mission Statistics** | Period of Mission | Wilsion D | 7/19/96 Thru 8/1/96 inclusive | |------------------------------|-----------|-------------------------------| | Airframe Log Book Hours | start | 8298:45 | | Air rame Log Book riours | end | 8325:50 | | | 00 | | | Maintenance Log Flight Hours | | 27:05 | | Pilot recorded Flight Hours | | 26:10 | | Pilot recorded Flights | | 160 | | Flot recorded i lighte | | , | | Hums recorded Flight Hours | | 17:13 | | Hums recorded Flights | | 95 | | Hums recorded Ground Time | | 14:06 | | | | | | Average Flight duration | | 10 Minutes | | Avoidge light default | | | | Gross Weight Breakdown | Light | 0% | | | Medium | 57% | | | Heavy | 43% | | | , | | | Altitude Breakdown | <3k ft | 94% | | | 3k-6k ft | 6% | | | >6k ft | 0% | | | | | | Correlation of Flight Time | | -5% Average | | Į - | | 14% Std Dev | | Correlation of Gross Weight | | -1% Average | | | | 5% Std Dev | | Correlation of CG | | 2.8" Average | | | | 2.7" Std Dev | Table 2.2 ASHM Spectrum | | Table 2.2 ASHM Sp | Perce | nt Time at | Gross Wei | ght (LB) | |-----|---|-------|------------|------------------|----------| | No. | Flight Condition | <8000 | 8000 to | 10000 to | Total | | | | | 10000 | 12500 | | | 1 | Rotor Start | 0 | 0 | ol | O | | | Ground Time (rpm 250-324) | 0 | 0 | 0 | 이 | | | Normal Shutdown with Collective | 0 | 0 | O | O O | | | IGE Steady Hover at 314 r.p.m. | 0 | 1.0280 | | 1.6022 | | | IGE Steady Hover at 324 r.p.m. | 0 | 2.0872 | 1.1657 | 3.2529 | | | IGE 90o Right Hover Turn | 0 | 0.6913 | | 0.9421 | | | IGE 90o Left Hover Turn | 0 | 0.7437 | | 1.2715 | | | IGE Longitudinal Control Reversal | 0 | 0.0214 | | 0.0579 | | وا | IGE Lateral Control Reversal | 0 | 0.0206 | 1 | 0.0889 | | | IGE Rudder Control Reversal | 0 | 0.0389 | • | 0.0484 | | | IGE Right Sideward Flight | 0 | 0.0151 | 1 | 0.0151 | | 12 | IGE Left Sideward Flight | 0 | 0.1191 | 0.0556 | 0.1746 | | | IGE Rearward Flight | 0 | 0 | | 0 | | 14 | Normal Takeoff & Acceleration to Climb Airspeed | 0 | 1 | | 6.2583 | | 15 | Twin Engine Normal Approach & Landing | 0 | 0.0730 | 0.0532 | 0.1262 | | 16 | Single Engine Normal Approach & Landing | 0 | | 1 - | 0 | | 17 | 0.4 Vh Level Flight at 314 r.p.m. | 0 | | | 0.6312 | | | 0.4 Vh Level Flight at 324 r.p.m. | 0 | 1 | | 2.5246 | | | 0.6 Vh Level Flight at 314 r.p.m. | 0 | § | 1 4 | 1.1091 | | | 0.6 Vh Level Flight at 324 r.p.m. | 0 | | 1 | 4.4365 | | | 0.8 Vh Level Flight at 314 r.p.m. | 0 | | 1 | 6.4399 | | | 0.8 Vh Level Flight at 324 r.p.m. | 0 | 1 | | 25.7597 | | | 0.9 Vh Level Flight at 314 r.p.m. | 1 0 | 1 | 4 | | | | 0.9 Vh Level Flight at 324 r.p.m. | | 1 | 1 | | | | 1.0 Vh Level Flight at 314 r.p.m. | | | 1 | _ | | | 1.0 Vh Level Flight at 324 r.p.m. | | 3.4593 | 1.7112 | 5.1705 | | | Vne at 314 r.p.m. |) (|) (| | U | | | Vne at 324 r.p.m. |) (| | 0 | 0 0001 | | 29 | Twin Engine Full Power Climb | | 1.5310 | 1.3080 | 2.8391 | | 30 | Single Engine Full Power Climb | 0 | | U | 0.0051 | | 31 | 0.6 Vh Cyclic Pullup | (| 0.396 | | | | 32 | 0.9 Vh Cyclic Pullup | 1 | 0.015 | -1 - | ۱ ^ | | 33 | Norm. Accel. from Climb A/S - 0.9 Vh | (| | 0 0704 | 1 | | | 0.6 Vh Right Turn | | 2.692 | | | | 35 | 0.9 Vh Right Turn | | 1.997 | 1 | | | | 0.6 Vh Left Turn | 1 | 1.373 | | E . | | 37 | 7 0.9 Vh Left Turn |] (| 2.631 | 1.7406 | 4.3725 | | | 0.9 Vh Longitudinal Control Reversal | 1 9 | י וכ | | | | 39 | 0.9 Vh Lateral Control Reversal | | ין
פ | | | | 4 | 0.9 Vh Rudder Control Reversal | • | י ס | | | | 4 | Deceleration from 0.9 Vh to Descent A/S | | 0 | 0 0000 | 0.001 | | | 2 Twin Engine Partial Power Descent | 1 (| 0 1.396 | 1 0.6953 | 2.0914 | **Table 2.2 ASHM Spectrum** | | Table 2.2 ASHM S | Perce | nt Time at | Gross We | ight (LB) | |--|--|---------------|---|---|--------------------------------------| | No. | Flight Condition | <8000 | 8000 to
10000 | 10000 to
12500 | Total | | 44
45
46
47
48
49
50
51
52 | Single Engine Partial Power Descent Twin to Single Engine in Full Power Climb Twin to Single Engine at 0.9 Vh Single to Twin Engine in Power Descent Twin Engine to Autorotation ¹ at 0.6 Vh Twin Engine to Autorotation ¹ at 0.9 Vh Stabilized Autorotation ¹ to Twin Engine Autorotation ¹ at Vne and Minimum r.p.m. Autorotation ¹ at Vne and Maximum r.p.m. Autorotation ¹ Right Turn Autorotation ¹ Left Turn Unrecognized | 0 0 0 0 0 0 0 | 0
0
0
0.0024
0.0016
0
0.0167
0 | 0.0016
0
0
0
0.0183
0.0175 | 0
0
0
0.0349
0
0.0421 | | | | 0 | 56.9250 | 43.0750 | 100.0000 | ¹⁾ Autorotation recorded when combined engine power less than 10% Figure 2.1 Spectra Comparison **Table 2.3 Spectra Comparison** | Rotor Start | N. 1 | Certification Spectrum Condition | Certification | Atlanta Short | Gulf Coast |
--|------|--|---------------|---------------|-------------------| | 1 Rotor Start 0.5000 0 2 Ground Time (rpm 250-324) 2 1.0000 0 0 3 Normal Shutdown with Collective 0.5000 0 0 1.6022 0.5000 0 0 1.6022 0.5000 0 0 0 0 0 0 0 0 0 | No. | Certification Spectrum Condition | | | % | | 2 Ground Time (rpm 250-324)² 3 Normal Shutdown with Collective¹ 4 IGE Steady Hover at 314 r.p.m. 5 IGE Steady Hover at 324 r.p.m. 6 IGE 900 Right Hover Turn 7 IGE 900 Left Hover Turn 8 IGE Longitudinal Control Reversal 9 IGE Lateral Control Reversal 10 IGE Rudder Control Reversal 11 IGE Right Sideward Flight 12 IGE Left Sideward Flight 13 IGE Rearward Flight 14 Normal Takeoff & Acceleration to Climb Airspeed 15 Twin Engine Normal Approach & Landing 17 0.4 Vh Level Flight at 314 r.p.m. 18 0.6 Vh Level Flight at 324 r.p.m. 20.8 Vh Level Flight at 314 r.p.m. 21 0.8 Vh Level Flight at 314 r.p.m. 22 0.8 Vh Level Flight at 324 r.p.m. 31 0.9 Vh Level Flight at 324 r.p.m. 32 0.9 Vh Level Flight at 324 r.p.m. 33 0.9 Vh Level Flight at 324 r.p.m. 34 0.9 Vh Level Flight at 324 r.p.m. 35 0.9 Vh Level Flight at 314 r.p.m. 36 0.6 Vh Cyclic Pullup 31 0.6 Vh Cyclic Pullup 32 0.9 Vh Left Turn 33 0.9 Vh Left Turn 36 0.6 Vh Left Turn 36 0.6 Vh Left Turn 37 0.9 Vh Left Turn 37 0.9 Vh Left Turn 38 0.9 Vh Level Flight Turn 37 0.9 Vh Left Turn 37 0.9 Vh Left Turn 38 0.9 Vh Longitudinal Control Reversal | | Date: Olad | | | 0 | | Solution Color C | | | | 0 | o | | 1.0000 1.6022 1.0000 1.6022 1.0000 1.6022 1.0000 1.0022 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.000000 1.000000 1.000000 1.000000 1.000000 1.0000000 1.0000000000 | 2 | Ground Time (rpm 250-324) | | B | o | | Single Steady Hover at 324 r.p.m. 2.0000 3.2529 | | | | 1 | 0.5501 | | SilgE Side Side Yillow SilgE Side Side Side Side Side Side Side Side | | | | 1 | | | TigE 900 Left Hover Turm | | | | 1 | | | Reserve Rese | | | | 1 | | | GE Lateral Control Reversal 0.0100 0.0889 10 IGE Rudder Control Reversal 0.0100 0.0484 11 IGE Right Sideward Flight 0.2500 0.0151 0.2500 0.1746 0.2500 0.1746 13 IGE Rearward Flight 0.2500 0.1746 0.1000 0 0 0 0 0 0 0 0 0 | | | | | [| | 10 IGE Rudder Control Reversal 0.0100 0.0484 11 IGE Right Sideward Flight 0.2500 0.0151 0.2500 0.1746 0.2500 0.1746 0.2500 0.1746 0.2500 0.1746 0.2500 0.1746 0.2500 0.1746 0.2500 0.1746 0.2500 0.1746 0.2500 0.1746 0.2500 0.1746 0.2500 0.1746 0.2500 0.1746 0.2500 0.2500 0.1746 0.2500 0.250 | 8 | IGE Longitudinal Control Reversal | | 1 | i 1 | | 11 IGE Right Sideward Flight 12 IGE Left Sideward Flight 13 IGE Rearward Flight 14 Normal Takeoff & Acceleration to Climb Airspeed 15 Twin Engine Normal Approach & Landing 16 Single Engine Normal Approach & Landing 17 0.4 Vh Level Flight at 314 r.p.m.³ 18 0.4 Vh Level Flight at 324 r.p.m.³ 19 0.6 Vh Level Flight at 324 r.p.m. 20 0.6 Vh Level Flight at 314 r.p.m. 21 0.8 Vh Level Flight at 314 r.p.m. 22 0.8 Vh Level Flight at 314 r.p.m. 23 0.9 Vh Level Flight at 324 r.p.m. 24 0.9 Vh Level Flight at 324 r.p.m. 25 1.0 Vh Level Flight at 314 r.p.m. 26 1.0 Vh Level Flight at 314 r.p.m. 27 Vne at 314 r.p.m. 28 Vne at 324 r.p.m. 29 Twin Engine Full Power Climb 30 Single Engine Full Power Climb 31 0.6 Vh Cyclic Pullup 30 Norm. Accel. from Climb A/S - 0.9 Vh 31 0.9 Vh Right Turn 30 0.9 Vh Left Turn 1.0000 3.4000 4.7646 37 0.9 Vh Left Turn 1.0000 3.8010 3.001746 3.10250 0.01746 0.1746 0.25500 0.1746 0.25500 0.1746 0.25500 0.1746 0.25500 0.1746 0.25500 0.1746 0.25500 0.12500 0.25246 0.25500 0.25500 0.25500 0.25246 0.25500 0.25246 0.25500 0.25246 0.25500 0.25246 0.25500 0.25246 0.25500 0.25246 0.25500 0.25246 0.25500 0.25246 0.25500 0.25246 0.25500 0.25246 0.25500 0.25246 0.25500 0.25246 0.25500 0.25500 0.25246 0.25500 | | | | 1 | | | 12 IGE Right Sideward Flight 12 IGE Left Sideward Flight 13 IGE Rearward Flight 14 Normal Takeoff & Acceleration to Climb Airspeed 1.5000 6.2583 15 Twin Engine Normal Approach & Landing 1.4300 0.1262 16 Single Engine Normal Approach & Landing 1.4300 0.0300 0 17 0.4 Vh Level Flight at 314 r.p.m. 3 0.2000 2.5246 19 0.6 Vh Level Flight at 324 r.p.m. 3 0.2000 2.5246 19 0.6 Vh Level Flight at 314 r.p.m. 2.4000 1.1091 0.6 Vh Level Flight at 314 r.p.m. 12.0000 6.4399 22 0.8 Vh Level Flight at 314 r.p.m. 12.0000 3.4167 24 0.9 Vh Level Flight at 314 r.p.m. 3.0000 25.7597 23 0.9 Vh Level Flight at 314 r.p.m. 30.4000 1.2926 25 1.0 Vh Level Flight at 314 r.p.m. 4.0000 3.4669 25 1.0 Vh Level Flight at 324 r.p.m. 30.4000 1.2926 26 1.0 Vh Level Flight at 324 r.p.m. 0.8000 0.0294 0.6 Vh Cyclic Pullup 0.1500 0.6651 0.6 Vh Cyclic Pullup 0.1500 0.6651 0.9 Vh Cyclic Pullup 0.0500 0.0294 0.0 Vh Cyclic Pullup 0.0500 0.0294 0.6 Vh Right Turn 1.0000 4.0439 0.9 Vh Left Turn 1.0000 4.0439 0.9 Vh Longitudinal Control Reversal 0.0500 0.0500 0.0500 0.0294 0.0 Vh Left Turn 1.0000 4.3725 38 0.9 Vh Longitudinal Control Reversal 0.0500
0.0500 | | | | | | | 13 IGE Rearward Flight 14 Normal Takeoff & Acceleration to Climb Airspeed 15 Twin Engine Normal Approach & Landing 16 Single Engine Normal Approach & Landing 17 0.4 Vh Level Flight at 314 r.p.m.³ 18 0.4 Vh Level Flight at 324 r.p.m.³ 20.6 Vh Level Flight at 314 r.p.m. 21 0.8 Vh Level Flight at 324 r.p.m. 22 0.8 Vh Level Flight at 324 r.p.m. 23 0.9 Vh Level Flight at 324 r.p.m. 24 0.9 Vh Level Flight at 324 r.p.m. 25 1.0 Vh Level Flight at 324 r.p.m. 26 1.0 Vh Level Flight at 324 r.p.m. 27 Vne at 314 r.p.m. 28 Vne at 324 r.p.m. 29 Twin Engine Full Power Climb 30 Single Engine Full Power Climb 31 0.6 Vh Cyclic Pullup 32 0.9 Vh Cyclic Pullup 33 Norm. Accel. from Climb A/S - 0.9 Vh 34 0.6 Vh Left Turn 35 0.9 Vh Left Turn 36 0.9 Vh Left Turn 37 0.9 Vh Left Turn 38 0.9 Vh Longitudinal Control Reversal | | | | 1 | 1 1 | | Normal Takeoff & Acceleration to Climb Airspeed 1.5000 6.2583 15 Twin Engine Normal Approach & Landing 1.4300 0.1262 16 Single Engine Normal Approach & Landing 0.0300 0 17 0.4 Vh Level Flight at 314 r.p.m. 0.8000 0.6312 18 0.4 Vh Level Flight at 324 r.p.m. 3 0.2000 2.5246 19 0.6 Vh Level Flight at 314 r.p.m. 2.4000 1.1091 20 0.6 Vh Level Flight at 314 r.p.m. 12.0000 6.4399 22 0.8 Vh Level Flight at 324 r.p.m. 3.0000 25.7597 23 0.9 Vh Level Flight at 324 r.p.m. 3.0000 3.4167 24 0.9 Vh Level Flight at 324 r.p.m. 4.0000 3.6669 25 1.0 Vh Level Flight at 324 r.p.m. 30.4000 1.2926 1.0 Vh Level Flight at 324 r.p.m. 30.4000 1.2926 1.0 Vh Level Flight at 324 r.p.m. 30.4000 5.1705 27 Vne at 314 r.p.m. 0.8000 0 0.2000 0.00000 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.00000000 | | | | 1 | ol | | 15 Twin Engine Normal Approach & Landing 16 Single Engine Normal Approach & Landing 17 0.4 Vh Level Flight at 314 r.p.m. 18 0.4 Vh Level Flight at 324 r.p.m. 20 0.6 Vh Level Flight at 324 r.p.m. 21 0.8 Vh Level Flight at 324 r.p.m. 22 0.8 Vh Level Flight at 324 r.p.m. 23 0.9 Vh Level Flight at 324 r.p.m. 24 0.9 Vh Level Flight at 324 r.p.m. 25 1.0 Vh Level Flight at 324 r.p.m. 26 1.0 Vh Level Flight at 324 r.p.m. 27 Vne at 314 r.p.m. 28 Vne at 324 r.p.m. 29 Twin Engine Full Power Climb 30 Single Engine Full Power Climb 31 0.6 Vh Cyclic Pullup 32 0.9 Vh Cyclic Pullup 33 Norm. Accel. from Climb A/S - 0.9 Vh 34 0.6 Vh Right Turn 35 0.9 Vh Left Turn 36 0.9 Vh Left Turn 37 0.9 Vh Left Turn 38 0.9 Vh Longitudinal Control Reversal | | | | | 0.1323 | | 16 Single Engine Normal Approach & Landing 17 0.4 Vh Level Flight at 314 r.p.m. 18 0.4 Vh Level Flight at 324 r.p.m. 19 0.6 Vh Level Flight at 324 r.p.m. 20 0.6 Vh Level Flight at 324 r.p.m. 21 0.8 Vh Level Flight at 324 r.p.m. 22 0.8 Vh Level Flight at 324 r.p.m. 23 0.9 Vh Level Flight at 314 r.p.m. 24 0.9 Vh Level Flight at 324 r.p.m. 25 1.0 Vh Level Flight at 324 r.p.m. 26 1.0 Vh Level Flight at 314 r.p.m. 27 Vne at 314 r.p.m. 28 Vne at 324 r.p.m. 29 Twin Engine Full Power Climb 30 Single Engine Full Power Climb 31 0.6 Vh Cyclic Pullup 32 0.9 Vh Cyclic Pullup 33 Norm. Accel. from Climb A/S - 0.9 Vh 34 0.6 Vh Right Turn 35 0.9 Vh Right Turn 36 0.6 Vh Left Turn 37 0.9 Vh Left Turn 38 0.9 Vh Longitudinal Control Reversal | 14 | Normal Takeon & Acceleration to Climb Allspeed | | | i i | | 17 0.4 Vh Level Flight at 314 r.p.m.³ 0.8000 0.6312 18 0.4 Vh Level Flight at 324 r.p.m.³ 0.2000 2.5246 19 0.6 Vh Level Flight at 314 r.p.m. 2.4000 1.1091 20 0.6 Vh Level Flight at 324 r.p.m. 0.6000 4.4365 21 0.8 Vh Level Flight at 314 r.p.m. 12.0000 6.4399 22 0.8 Vh Level Flight at 324 r.p.m. 3.0000 25.7597 23 0.9 Vh Level Flight at 314 r.p.m. 4.0000 13.6669 24 0.9 Vh Level Flight at 314 r.p.m. 30.4000 1.2926 25 1.0 Vh Level Flight at 324 r.p.m. 7.6000 5.1705 27 Vne at 314 r.p.m. 0.8000 0 28 Vne at 324 r.p.m. 0.2000 0 29 Twin Engine Full Power Climb 4.7500 2.8391 30 Single Engine Full Power Climb 0.1500 0.6651 32 0.9 Vh Cyclic Pullup 0.0500 0.0294 33 Norm. Accel. from Climb A/S - 0.9 Vh 1.0000 4.7646 35 0.9 Vh Right Turn 1.0000 4.0439 36 <td>15</td> <td>I Win Engine Normal Approach & Landing</td> <td></td> <td>1</td> <td>1</td> | 15 | I Win Engine Normal Approach & Landing | | 1 | 1 | | 18 0.4 Vh Level Flight at 324 r.p.m.³ 0.2000 2.5246 19 0.6 Vh Level Flight at 314 r.p.m. 2.4000 1.1091 20 0.6 Vh Level Flight at 314 r.p.m. 0.6000 4.4365 21 0.8 Vh Level Flight at 324 r.p.m. 12.0000 6.4399 22 0.8 Vh Level Flight at 324 r.p.m. 3.0000 25.7597 23 0.9 Vh Level Flight at 324 r.p.m. 4.0000 3.4167 24 0.9 Vh Level Flight at 324 r.p.m. 4.0000 13.6669 25 1.0 Vh Level Flight at 324 r.p.m. 30.4000 1.2926 26 1.0 Vh Level Flight at 324 r.p.m. 7.6000 5.1705 27 Vne at 314 r.p.m. 0.8000 0 28 Vne at 324 r.p.m. 0.2000 0 29 Twin Engine Full Power Climb 4.7500 2.8391 30 Single Engine Full Power Climb 0.1500 0.6651 32 0.9 Vh Cyclic Pullup 0.0500 0.0294 33 Norm. Accel. from Climb A/S - 0.9 Vh 1.0000 4.7646 35 0.9 Vh Right Turn 1.0000 4.0439 36 <td>16</td> <td>Single Engine Normal Approach & Landing</td> <td>1</td> <td></td> <td>1</td> | 16 | Single Engine Normal Approach & Landing | 1 | | 1 | | 19 0.6 Vh Level Flight at 314 r.p.m. 2.4000 1.1091 20 0.6 Vh Level Flight at 324 r.p.m. 0.6000 4.4365 21 0.8 Vh Level Flight at 314 r.p.m. 12.0000 6.4399 22 0.8 Vh Level Flight at 324 r.p.m. 3.0000 25.7597 23 0.9 Vh Level Flight at 314 r.p.m. 16.0000 3.4167 24 0.9 Vh Level Flight at 324 r.p.m. 4.0000 13.6669 25 1.0 Vh Level Flight at 314 r.p.m. 30.4000 1.2926 26 1.0 Vh Level Flight at 324 r.p.m. 7.6000 5.1705 27 Vne at 314 r.p.m. 0.8000 0 0.2000 0.2000 0 0.2000 0 0.2000 0.2 | 17/ | 10.4 Vn Level Flight at 314 r.p.m. | | | | | 20 0.6 Vh Level Flight at 324 r.p.m. 21 0.8 Vh Level Flight at 324 r.p.m. 22 0.8 Vh Level Flight at 324 r.p.m. 3.0000 25.7597 23 0.9 Vh Level Flight at 324 r.p.m. 3.0000 3.4167 24 0.9 Vh Level Flight at 324 r.p.m. 4.0000 3.4167 25 1.0 Vh Level Flight at 324 r.p.m. 30.4000 12.926 1.0 Vh Level Flight at 324 r.p.m. 7.6000 5.1705 27 Vne at 314 r.p.m. 9 Vne at 324 r.p.m. 10.2000 28 Vne at 324 r.p.m. 29 Twin Engine Full Power Climb 30 Single Engine Full Power Climb 31 0.6 Vh Cyclic Pullup 31 0.6 Vh Cyclic Pullup 32 0.9 Vh Cyclic Pullup 33 Norm. Accel. from Climb A/S - 0.9 Vh 34 0.6 Vh Right Turn 35 0.9 Vh Right Turn 36 0.6 Vh Left Turn 37 0.9 Vh Left Turn 30.0000 4.4365 12.0000 4.4365 12.0000 4.4365 12.0000 4.43669 3.0000 5.1705 5.1705 6.6699 5.1705 6.6800 6.4399 6.6439 6.64399 6.64399 6.64399 6.64399 6.64399 6.64399 6.64399 6.64399 6.64399 6.6439 6.6439 6.6439 6.6439 6.6499 6.6439 6.6400 6.64399 6.6439 6.6400 6.64399 6.6439 6.6400 6.6439 6.6400 6.6439 6.6400 6.6439 6.6400 6.6400 6.6400 6.6400 6.6400 6.6400 6.64000 6.6400 6.6400 6.6400 6.6400 6.6400 6.6400 6.6400 6.6400 6.64000 6.64000 6.64000 6.64000 6.64000 6.64000 6.64000 6.64000 6.64000 6.64000 6.64000 6.64000 6.64000 6.64000 6.64000 6.64000 6.64000 6.64000
6.64000 6.64000 6.64000 6.64000 6.64000 6.64000 6.64000 6.64000 6.64000 6.64000 6.64000 6.64000 6.64000 6.64000 6.640 | | | · · | 1 | h | | 21 0.8 Vh Level Flight at 314 r.p.m. 22 0.8 Vh Level Flight at 324 r.p.m. 3.0000 25.7597 23 0.9 Vh Level Flight at 314 r.p.m. 3.0000 3.4167 24 0.9 Vh Level Flight at 324 r.p.m. 4.0000 3.4167 24 0.9 Vh Level Flight at 324 r.p.m. 30.4000 13.6669 25 1.0 Vh Level Flight at 314 r.p.m. 7.6000 27 Vne at 314 r.p.m. 7.6000 28 Vne at 324 r.p.m. 7.6000 29 Twin Engine Full Power Climb 30 Single Engine Full Power Climb 31 0.6 Vh Cyclic Pullup 32 0.9 Vh Cyclic Pullup 33 Norm. Accel. from Climb A/S - 0.9 Vh 0.6 Vh Right Turn 30.9 Vh Right Turn 1.0000 31 0.6 Vh Left Turn 1.0000 32 0.9 Vh Left Turn 30.9 Vh Left Turn 1.0000 31 0.9 Vh Left Turn 30.9 Longitudinal Control Reversal | | | 1 | | 1 1 | | 22 0.8 Vh Level Flight at 324 r.p.m. 23 0.9 Vh Level Flight at 314 r.p.m. 24 0.9 Vh Level Flight at 314 r.p.m. 3.0000 3.4167 24 0.9 Vh Level Flight at 324 r.p.m. 4.0000 13.6669 25 1.0 Vh Level Flight at 314 r.p.m. 30.4000 1.2926 1.0 Vh Level Flight at 324 r.p.m. 7.6000 27 Vne at 314 r.p.m. 9 Vne at 324 r.p.m. 10.2000 10.6 Vh Cyclic Pullup 10.6 Vh Cyclic Pullup 10.9 Vh Cyclic Pullup 10.9 Vh Cyclic Pullup 10.9 Vh Right Turn 10.900 10.6 Vh Right Turn 10.000 10.6 Vh Left Turn 10.000 10.000 10.0000 10. | 20 | 0.6 Vn Level Flight at 324 r.p.m. | 1 | ⁻ | | | 23 0.9 Vh Level Flight at 314 r.p.m. 24 0.9 Vh Level Flight at 324 r.p.m. 25 1.0 Vh Level Flight at 314 r.p.m. 26 1.0 Vh Level Flight at 324 r.p.m. 27 Vne at 314 r.p.m. 28 Vne at 324 r.p.m. 29 Twin Engine Full Power Climb 30 Single Engine Full Power Climb 31 0.6 Vh Cyclic Pullup 30.9 Vh Cyclic Pullup 30.9 Vh Right Turn 30.9 Vh Right Turn 30.9 Vh Left Turn 30.9 Vh Left Turn 30.9 Vh Longitudinal Control Reversal | | | | - 1 | | | 24 0.9 Vh Level Flight at 324 r.p.m. 25 1.0 Vh Level Flight at 314 r.p.m. 26 1.0 Vh Level Flight at 324 r.p.m. 27 Vne at 314 r.p.m. 28 Vne at 324 r.p.m. 29 Twin Engine Full Power Climb 30 Single Engine Full Power Climb 31 0.6 Vh Cyclic Pullup 32 0.9 Vh Cyclic Pullup 33 Norm. Accel. from Climb A/S - 0.9 Vh 34 0.6 Vh Right Turn 35 0.9 Vh Right Turn 36 0.6 Vh Left Turn 37 0.9 Vh Left Turn 38 0.9 Vh Longitudinal Control Reversal 30.4000 1.2926 7.6000 5.1705 0.8000 0.220 | | | | - 1 | 1 _1 | | 25 1.0 Vh Level Flight at 314 r.p.m. 26 1.0 Vh Level Flight at 324 r.p.m. 27 Vne at 314 r.p.m. 28 Vne at 324 r.p.m. 29 Twin Engine Full Power Climb 30 Single Engine Full Power Climb 31 0.6 Vh Cyclic Pullup 32 Norm. Accel. from Climb A/S - 0.9 Vh 34 0.6 Vh Right Turn 30.4000 5.1705 6.1705 | | | | · | 1 | | 25 1.0 Vh Level Flight at 324 r.p.m. 26 1.0 Vh Level Flight at 324 r.p.m. 27 Vne at 314 r.p.m. 28 Vne at 324 r.p.m. 29 Twin Engine Full Power Climb 30 Single Engine Full Power Climb 31 0.6 Vh Cyclic Pullup 0.9 Vh Cyclic Pullup 32 Norm. Accel. from Climb A/S - 0.9 Vh 34 0.6 Vh Right Turn 35 0.9 Vh Right Turn 36 0.6 Vh Left Turn 37 0.9 Vh Left Turn 38 0.9 Vh Longitudinal Control Reversal 7.6000 5.1705 7.6000 0.8000 0.2000 0.1200 0.1500 0.0651 1.0000 4.7646 1.0000 4.7646 1.0000 4.7646 | | | • | - | 1 | | 27 Vne at 314 r.p.m. 0.8000 28 Vne at 324 r.p.m. 0.2000 29 Twin Engine Full Power Climb 4.7500 2.8391 30 Single Engine Full Power Climb 0.1200 0 31 0.6 Vh Cyclic Pullup 0.1500 0.6651 32 0.9 Vh Cyclic Pullup 0.0500 0.0294 33 Norm. Accel. from Climb A/S - 0.9 Vh 1.0000 4.7646 35 0.9 Vh Right Turn 1.0000 4.0439 36 0.6 Vh Left Turn 1.0000 4.3725 38 0.9 Vh Longitudinal Control Reversal 0.0500 0 | | | 1 | - 1 | | | 28 Vne at 324 r.p.m. 0.2000 29 Twin Engine Full Power Climb 4.7500 30 Single Engine Full Power Climb 0.1200 31 0.6 Vh Cyclic Pullup 0.1500 0.9 Vh Cyclic Pullup 0.0500 33 Norm. Accel. from Climb A/S - 0.9 Vh 1.0000 34 0.6 Vh Right Turn 1.0000 0.9 Vh Right Turn 1.0000 36 0.6 Vh Left Turn 1.0000 37 0.9 Vh Left Turn 1.0000 38 0.9 Vh Longitudinal Control Reversal 0.0500 | | • | | 1 | امعما | | 29 Twin Engine Full Power Climb 4.7500 2.8391 30 Single Engine Full Power Climb 0.1200 0 31 0.6 Vh Cyclic Pullup 0.1500 0.6651 32 0.9 Vh Cyclic Pullup 0.0500 0.0294 33 Norm. Accel. from Climb A/S - 0.9 Vh 1.0000 4.7646 35 0.9 Vh Right Turn 1.0000 4.0439 36 0.6 Vh Left Turn 1.0000 2.8248 37 0.9 Vh Left Turn 1.0000 4.3725 38 0.9 Vh Longitudinal Control Reversal 0.0500 0 | | • | L | 1 | 1.8046 | | 30 Single Engine Full Power Climb 31 0.6 Vh Cyclic Pullup 32 0.9 Vh Cyclic Pullup 33 Norm. Accel. from Climb A/S - 0.9 Vh 34 0.6 Vh Right Turn 35 0.9 Vh Right Turn 36 0.6 Vh Left Turn 37 0.9 Vh Left Turn 38 0.9 Vh Longitudinal Control Reversal 30 Single Engine Full Power Climb 30 0.1200 0.1500 0.0651 0.0500 0.0294 1.0000 4.7646 1.0000 4.7646 1.0000 4.3725 | | | l | | 6.3150 | | 31 0.6 Vh Cyclic Pullup 0.1500 0.6651 32 0.9 Vh Cyclic Pullup 0.0500 0.0294 33 Norm. Accel. from Climb A/S - 0.9 Vh 1.0000 0.4.7646 34 0.6 Vh Right Turn 1.0000 4.0439 35 0.9 Vh Right Turn 1.0000 2.8248 37 0.9 Vh Left Turn 1.0000 4.3725 38 0.9 Vh Longitudinal Control Reversal 0.0500 0 | | | 1 | ~ <u> </u> | اميمما | | 32 0.9 Vh Cyclic Pullup 0.0500 0.0294 33 Norm. Accel. from Climb A/S - 0.9 Vh 1.0000 0 34
0.6 Vh Right Turn 1.0000 4.7646 35 0.9 Vh Right Turn 1.0000 4.0439 36 0.6 Vh Left Turn 1.0000 2.8248 37 0.9 Vh Left Turn 1.0000 4.3725 38 0.9 Vh Longitudinal Control Reversal 0.0500 0 | | | | | 0.0862 | | 33 Norm. Accel. from Climb A/S - 0.9 Vh 1.0000 0 34 0.6 Vh Right Turn 1.0000 4.7646 35 0.9 Vh Right Turn 1.0000 4.0439 36 0.6 Vh Left Turn 1.0000 2.8248 37 0.9 Vh Left Turn 1.0000 4.3725 38 0.9 Vh Longitudinal Control Reversal 0.0500 0 | | | 1 | - 1 | 4 0.0182 | | 34 0.6 Vh Right Turn 1.0000 4.7646 35 0.9 Vh Right Turn 1.0000 4.0439 36 0.6 Vh Left Turn 1.0000 2.8248 37 0.9 Vh Left Turn 1.0000 4.3725 38 0.9 Vh Longitudinal Control Reversal 0.0500 0 | | | | | _ | | 35 0.9 Vh Right Turn 36 0.6 Vh Left Turn 37 0.9 Vh Left Turn 38 0.9 Vh Left Turn 38 0.9 Vh Longitudinal Control Reversal 36 0.5 Vh Left Turn 37 0.9 Vh Longitudinal Control Reversal 38 0.9 Vh Longitudinal Control Reversal | | | | | 6 1.2422 | | 36 0.6 Vh Left Turn 1.0000 2.8248 37 0.9 Vh Left Turn 1.0000 4.3725 38 0.9 Vh Longitudinal Control Reversal 0.0500 0 | _ | • | * | | 9 0.2726 | | 37 0.9 Vh Left Turn 1.0000 4.3725
38 0.9 Vh Longitudinal Control Reversal 0.0500 0 | | | В | | 8 0.4894 | | 38 0.9 Vh Longitudinal Control Reversal 0.0500 | | | 3 | -1 | | | 1 36 0.9 VII Edilgitudinar Control Noveloan | | | | - 1 | o 0 | | i solo o Vh Lateral Control Reversal 0.05001 U | 3 | 90.9 Vh Lateral Control Reversal | 0.050 | I | 0 0 | | 40 0.9 Vh Rudder Control Reversal 0.0500 | | | í | | 0 0 | | 41 Deceleration from 0.9 Vh to Descent A/S 0.1800 | | | I | | 0 0 | | 42 Twin Engine Partial Power Descent 2.6440 2.0914 | | | 1 | 1 | 4.1055 | **Table 2.3 Spectra Comparison** | No. | Certification Spectrum Condition | Certification % | Atlanta Short
Haul % | Gulf Coast | |--|--|--|---|-------------------------------------| | 44
45
46
47
48
49
50
51
52 | Single Engine Partial Power Descent Twin to Single Engine in Full Power Climb Twin to Single Engine at 0.9 Vh Single to Twin Engine in Power Descent Twin Engine to Autorotation ⁴ at 0.6 Vh Twin Engine to Autorotation ⁴ at 0.9 Vh Stabilized Autorotation ⁴ to Twin Engine Autorotation ⁴ at Vne and Minimum r.p.m. Autorotation ⁴ at Vne and Maximum r.p.m. Autorotation ⁴ Right Turn Autorotation ⁴ Left Turn Unrecognized | 0.1300
0.0100
0.0100
0.0100
0.0050
0.0100
0.0200
0.0200
0.0030
0.0030 | 0.0032
0.0032
0.0032
0.00349
0.0349 | 0.0001
0.0001
0.0128
0.007 | - 1) Rotor starts and shutdowns are considered as events. Main Rotor Yoke is the only affected component out of the four selected components. - 2) Ground time was added after spectrum analysis, therefore is excluded from the spectrum. - 3) 0.4Vh data missing from gulf coast data. - 4) Autorotation recorded when combined engine power is less than 10% - 5) Unrecognized data reduced to 0.05% for component fatigue life calculations. | | | | le 2.4 D | Detail Flight Record Comparison | | | | | | | |----------------|--|--------------------------------|--|---------------------------------|----------|-----------|--------------|----------|-----------|-------------| | Pilo | t Recor | d | | | IS Reco | | | | fferenc | | | Flight Start | GW
LB | CG
IN. | Time
Min. | Flight Start | GW
LB | CG
IN. | Time
Min. | GW
LB | CG
IN. | Time | | 07/19/96 05:41 | 9767 | 140.8 | 14 | 07/19/96 05:43 | 9725 | 141.0 | 14.2 | 0% | -0.2 | -1% | | 07/19/96 06:32 | 9842 | 139.2 | 12 | 07/19/96 06:33 | 9663 | 142.1 | 11.9 | 2% | -2.9 | 1% | | 07/19/96 06:49 | 9337 | 139.4 | 16 | 07/19/96 06:50 | 9018 | 142.2 | 15.6 | 4% | -2.8 | 3% | | 07/19/96 07:20 | 9652 | 138.6 | 14 | 07/19/96 07:20 | 10357 | 133.1 | 13.6 | -7% | 5.5 | 3% | | 07/19/96 07:40 | 8947 | 139.9 | 7 | 07/19/96 07:40 | 9588 | 134.9 | 6.3 | -7% | 5.0 | 11% | | 07/19/96 09:31 | | 140.0 | 6 | 07/19/96 09:31 | 9805 | 142.7 | 6.1 | 3% | -2.7 | -2% | | 07/19/96 09:42 | 10007 | 140.1 | 4 | 07/19/96 09:41 | 10263 | 135.8 | 4.5 | -2% | 4.3 | -11% | | 07/19/96 09:52 | 9927 | 140.3 | 3 | 07/19/96 09:52 | 10569 | 136.6 | 3.4 | -6% | 3.7 | -12% | | 07/19/96 10:03 | 9847 | 140.5 | 6 | 07/19/96 10:04 | 10324 | 138.6 | 5.7 | -5% | 1.9 | 5% | | 07/19/96 10:15 | 9717 | 140.9 | 17 | 07/19/96 10:15 | 9978 | 134.6 | 20.6 | -3% | 6.3 | -17% | | 07/19/96 10:40 | 9542 | 139.6 | 13 | 07/19/96 10:41 | 9581 | 137.9 | 12.3 | 0% | 1.7 | . 6% | | 07/19/96 10:58 | 9382 | 139.0 | 8 | 07/19/96 10:58 | 9440 | 138.1 | 7.5 | -1% | 0.9 | 7% | | 07/19/96 11:14 | 9184 | 139.4 | 9 | | | | | | | 1 | | 07/19/96 11:25 | 9047 | 140.1 | 7 | | | | | i | | | | 07/20/96 08:00 | | | 25 | 07/20/96 07:58 | 10076 | 138.7 | 28.4 | | | -12% | | 07/22/96 21:45 | | 140.5 | 4 | 07/22/96 21:47 | 10412 | 140.6 | 5.7 | -2% | -0.1 | -30% | | 07/22/96 22:00 | | 140.4 | 17 | 07/22/96 22:01 | 10334 | 140.7 | 17.6 | -3% | -0.3 | -3% | | 07/22/96 22:24 | | 139.5 | 9 | 07/22/96 22:26 | 9968 | 139.2 | 9.6 | 1% | 0.3 | -6% | | 07/22/96 22:42 | | 141.1 | 16 | 07/22/96 22:44 | 9945 | 140.4 | 11.9 | -3% | 0.7 | 34% | | 07/23/96 05:15 | | 140.5 | 6 | 07/23/96 05:15 | 9985 | 140.5 | 7.3 | 0% | 0.0 | -18% | | 07/23/96 05:38 | | 136.6 | 16 | 07/23/96 05:39 | 11679 | 131.1 | 16.6 | -8% | 5.5
 -4% | | 07/23/96 06:15 | | 140.1 | 6 | 07/23/96 06:16 | 10124 | | 6.0 | -2% | -3.1 | 0% | | 07/23/96 06:26 | | 140.5 | 5 | 07/23/96 06:28 | 9943 | 139.5 | 5.5 | -4% | 1.0 | -9% | | 07/23/96 06:40 | | 137.9 | 7 | 07/23/96 06:41 | 9309 | 140.1 | 7.9 | 5% | -2.2 | -11% | | 07/23/96 06:52 | | 139.4 | 13 | 07/23/96 06:54 | 9736 | 140.1 | 12.6 | -5% | -0.7 | 3% | | 07/23/96 07:08 | | 136.3 | 12 | | 9309 | | 11.9 | 19% | 0.6 | 1% | | 07/23/96 07:45 | | 139.5 | 9 | 07/23/96 07:48 | 10980 | | 8.5 | -18% | 1.0 | 6% | | 07/23/96 08:14 | | 139.6 | 6 | 07/23/96 08:15 | 9373 | 136.5 | 6.1 | -6% | 3.1 | -2% | | 07/23/96 08:22 | | | 8 | | 9571 | 138.0 | 6.5 | ٠,, | 4.0 | 23% | | 07/23/96 09:29 | | 140.4 | 5 | 07/23/96 09:30 | 9882 | 141.6 | | | -1.2 | -25%
-4% | | 07/23/96 09:42 | | 140.7 | 7 | 07/23/96 09:44 | 10005 | | 7.3 | -1% | 3.0 | | | 07/23/96 09:54 | | 141.0 | 7 | 07/23/96 09:56 | 9958 | | 7.6 | | 2.9 | -8% | | 07/23/96 10:15 | | 140.6 | 19 | 07/23/96 10:16 | 10004 | 135.9 | 20.0 | 1 | 4.7 | -5% | | 07/23/96 10:41 | 9430 | 139.1 | 12 | | 9915 | 133.9 | 13.2 | | 5.2 | -9% | | 07/23/96 10:58 | | | | _ | | | | | -0.8 | | | 07/23/96 11:10 | | | | | | | | 8 | | | | 07/23/96 11:27 | COLUMN CAPUS COMMUNICATION | | 5
************************************ | 07/23/96 11:29 | | | | -7% | 5.6 | -17% | | 07/23/96 12:15 | | | A STATE OF THE STA | | nums | Data " | | | | | | 07/23/96 12:27 | Commence of the second | a principal of the property of | 100 | • | u | 64 | | ł | | | | 07/23/96 12:47 | The second of the | | | | | 4 | | 1 | | | | 07/23/96 13:00 | | 131.7 | | | u | 44 | | | | | | 07/23/96 13:26 | THE PARTY OF P | 131.3 | THE PERSON CALLS AND A | • | | 4 | | | | | | 07/23/96 13:43 | 100000000000000000000000000000000000000 | 131.0 | | 4 | u
u | <u>и</u> | | 1 | | | | 07/23/96 13:55 | | - 130.8 | 9
9 | 44 | 64 | u | | 1 | | | | 07/23/96 14:12 | | 400 4 | | | 44 | | | 1 | | | | 07/23/96 15:02 | | 139.1 | | . 🖫 | | " | | | | | | 07/23/96 15:12 | 102/1 | 138.6 | 5 | 1 | | | | l | | | | | | Tabl | e 2.4 Det | etail Flight Record Comparison Difference | | | | | | | | |----------------------------------|--|--|--|--|--------|-------------|------|----------|----------|-------------|------| | Dilo | t Recor | | | HUMS Record | | | | | | | | | | GW | CG | Time | Flight Start | GW | CG | Time | GW | | - | ime | | Flight Start | LB | IN. | Min. | | LB | IN. | Min. | LB | | N | | | | | 138.5 | 6 | н | 44 | 66 | | | | | ł | | | 10236 | 138.8 | 20 | " | 44 | 66 | | | | | | | 07/23/96 15:37 | 10130 | 139.0 | 12 | 44 | 66 | 44 | | | | | 1 | | 07/23/96 16:03 | 9811 | 127 5 22 24 25 25 | - 7 | 44 | " | 56 | | | | | 1 | | 07/23/96 16:21 | 9641 | 138.4 | 10 | u | ££ | 44 | | | | | 1 | | 07/23/96 16:33 | | 138.0
137.8 | 10 | " | 44 | 44 | | | | | | | 07/23/98 16:47 | 9381 | 138.4 | 9 | 44 | 66 | 4 | | } | | | | | 07/23/96 17:04 | 9271 | 138.8 | . 5 | 44 | 44 | 66 | | 1 | | | | | 07/23/96 17:45 | 10461 | 138.9 | 6 | " | 44 | 44 | | 1 | | | | | 07/23/96 17:57 | | 138.4 | 4 | 44 | 44 | 66 | | Į . | | | | | 07/23/96 18:09 | | 138.7 | 20 | 4 | 66 | 64 | | l | | | | | 07/23/96 18:22 | 10186
9771 | 139.1 | 11 | 44 | 66 | | | | | | | | 07/23/96 18:48 | 9621 | 138.1 | . 6 | 4 | u | 44 | | 1 | | | | | 07/23/96 19:05 | | The state of the state of | 73 40 A 10 A 10 A 10 A | " | " | 64 | | 1 | | | | | 07/23/96 19:18 | | P. LOS CONTRACTOR AND | CONTRACTOR OF THE SALE | u | 4 | 44 | | | | | | | 07/23/96 19:32
07/23/96 19:49 | The second secon | The state of s | 20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | " | " | u | | 1 | | | | | 07/23/96 19:45 | | 139.0 | A STATE OF THE PARTY PAR | u | u | 4 | | 1 | | | | | 07/23/96 22:00 | The sales of the sales | The same of the | CAC SECTION CONT. | 44 | 4 | 64 | | 1 | | | | | 07/23/96 22:24 | | だるできた といといと | | u | 4 | • | | 1 | | | | | 07/23/96
22:42 | The second second second | and the same said | 10000 614 44000 10100 | Missing | | Data | | | · • / | 0.4 | -4% | | 07/24/96 05:55 | And the second of the beating of the second | Period and an article and a second | Complete Control Control | 07/24/96 05:57 | | | | | % | -0.4
1.5 | -6% | | 07/24/96 06:26 | | | | 07/24/96 06:28 | | | | | % | 5.3 | 4% | | 07/24/96 06:42 | | _ | | 07/24/96 06:44 | 10090 | | | · | % | 3.3
2.9 | -2% | | 07/24/96 07:10 | | _ | | 07/24/96 07:11 | | | | • | !%
 % | 6.3 | 2% | | 07/24/96 07:38 | | | | 07/24/96 07:40 | | | | · 1 | % | 1.4 | -28% | | 07/24/96 09:30 | | | 7 5 | 07/24/96 09:30 | | | | - | 2% | 4.4 | -11% | | 07/24/96 09:4 | - | | 3 4 | 07/24/96 09:44 | | | | ~ I | 5% | 0.9 | -23% | | 07/24/96 09:5 | _ | | 3 2 | 07/24/96 09:5 | | | | T . | 3% | 4.3 | -8% | | 07/24/96 10:0 | | 1 141.0 | | 07/24/96 10:04 | | | | - | 1% | 1.8 | 1% | | 07/24/96 10:1 | | 1 141.3 | | 07/24/96 10:1 | | | - | - | 5% | 6.8 | -13% | | 07/24/96 10:4 | | | _ | 07/24/96 10:4 | | | | - | 1% | 2.9 | -179 | | 07/24/96 10:5 | | | _ | 07/24/96 11:0 | | | - | | 1% | 3.4 | -19 | | 07/24/96 11:1 | 0 925 | | _ 1 | 07/24/96 11:1 | | | _ | | 7% | 7.1 | -20% | | 07/24/96 11:2 | 7 913 | | | 07/24/96 11:2 | _ | | | | | | | | 07/24/96 12:1 | 5 994 | | | MISSIN | g Hum: | , <u>pa</u> | 4 | } | | | | | 07/24/96 12:2 | 7 982 | 3 | to the water than here and | 1 | 44 | 4 | ** | | | | | | 07/24/96 12:3 | 7 974 | a to all your " no me to | The same and the same of s | 1 | 44 | 44 | u | 1 | | | | | 07/24/96 12:4 | | | | | 44 | ** | 4 | | | | | | 07/24/96 13:0 | | 100000000000000000000000000000000000000 | 4 19 | | 66 | 44 | 46 | - [| | | | | 07/24/96 13:2 | 6 915 | | | | 44 | 44 | 44 | | | | | | 07/24/96 13:4 | | | | | 66 | 4 | 44 | | | | | | 07/24/96 13: | | | A CO. LAND ST. CO. LAND | | 44 | u | 44 | | | | | | 07/24/96 14: | 12 874 | | | `` E | 4 | 44 | 14 | ı | | | | | 07/24/96 15:0 | 30 1021 | 16 138 | The state of s | ×. | 64 | 4 | 66 | - 1 | | | | | 07/24/96 15: | 12 101 | 16 139 | | 219 | 64 | 4 | u | 1 | | | | | 07/24/96 15: | 24 100 | 46 139 | | | 44 | 4 | 4 | | | | | | 07/24/96 15: | 37 98 | | | | 44 | 64 | u | • | | | | | 07/24/96 16: | 03 95 | B6 138 | .o. | ₩. | | | | - | | | | | Pilo | t Recor | | | HUMS Record | | | | Difference | | | |----------------------------------|--|----------------|--------|---|---------------|----------------|-------------|------------|------------------------|------------| | | Flight Start GW CG Time | | | | GW | CG | Time | GW | CG | Time | | Flight Start | LB | IN. | Min. | Flight Start | LB | IN. | Min. | LB | IN. | | | 07/24/98 16:20 | 9436 | 138.2 | 7 | и | и | u | | | | | | 07/22/96: 6-29 | 9316 | 138.1 | 41 | ££ | ** | 64 | | | | | | 07/24/96 6:47 | 9208 | 138.7 | 10 | 46 | " | 66 | • | | | i | | 07/24/96:17:04 | 9056 | 138.6 | 9 | 44 | u | 44 | | | | Į. | | 07/24/98 7/45 | A COLUMN TO THE OWNER OF OWNER OF THE OWNER OWN | 139.0 | 5 | 44 | и | 55 | | | | l | | 07/24/96 17:57 | | 138.8 | - 5 | £4 | 44 | 66 | | | | 1 | | 07/24/96 18:09 | 10126 | 139.0 | 6 | . " | u | 64 | | | | | | 07/24/96 18:22 | 9966 | 139.4 | 19 | ** | и | 44 | | | | ł | | 07/24/96 18:48 | 9708 | 139.2 | 11 | " | " | 44 | | | | ļ | | 07/24/96 19:05 | 9546 | 138.6 | 7 | ŧŧ | 4 | ** | | | | • | | 67/24/98 19:14 | 9446 | 138.2 | 11 | 66 | æ | æ | | | | 1 | | 07/24/96 19:32 | 9296 | 1382 | 9 | . " | u | 4 | | | | Ì | | 07/24/96 19:49 | 9186 | 138.9 | 5 | 4 | " | 44 | | l | | | | 07/24/96 20:35 | 10288 | 139.2 | 5 | 44 | 4 | " | | l | | | | 07/24/96 20:47 | 10166 | 1889 | 5 | 44 | 64 | 4 | | 1 | | | | 07/24/96 21:08 | | 139.3 | 6 | | 4 | 4 | | l | | | | 07/24/96 21:22 | 9916 | 139.5 | 19 | u | 4 | | | i | | | | 07/24/96 21:47 | 9636 | 139.0 | 11 | | | | | | | | | 07/24/96 22:29 | K + 1 - 1 - 2 - 2 - 3 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 | | - 11 | Missing | Hums | Data | 44.5 | 40/ | ^ 0 | 400/ | | 07/25/96 05:55 | 10111 | 140.8 | 13 | 07/25/96 05:57 | 10049 | 140.0 | 14.5 | 1% | 0.8
5.5 | -10%
8% | | 07/25/96 06:22 | 10280 | 140.4 | 15 | 07/25/96 06:26 | 10448 | 134.9 | 13.9 | -2%
-3% | 3.9 | -1% | | 07/25/96 06:42 | 9651 | 141.4 | 15 | 07/25/96 06:44 | 9979 | 137.5 | 15.2 | 1% | 3. 9
2.1 | -3% | | 07/25/96 07:10 | 10131 | 141.9 | 16 | 07/25/96 07:12 | 10053 | 139.8
134.7 | 16.5
5.3 | | 5.1 | -25% | | 07/25/96 07:38 | 9161 | 139.8 | 4 | 07/25/96 07:39 | 9572
10163 | 135.9 | 5.5
6.6 | | 4.8 | -24% | | 07/25/96 09:30 | 9911 | 140.7 | 5 | 07/25/96 09:31 | 10096 | 137.3 | 4.1 | -4% | 4.0 | -27% | | 07/25/96 09:45 | 9711 | 141.3 | 3 | 07/25/96 09:47 | 9784 | 139.3 | 3.3 | | 1.9 | -39% | | 07/25/96 09:56 | 9611 | 141.2 | 2
7 | 07/25/96 09:58
07/25/96 10:05 | 10019 | 135.9 | 8.2 | | 5.0 | -15% | | 07/25/96 10:05 | 9521 | 140.9
139.1 | 5 | 07/25/96 10:05 | 10119 | 140.5 | 5.9 | 1 | -1.4 | -15% | | 07/25/96 20:35 | 10266
10156 | | | 07/25/96 20:49 | 10825 | 133.9 | 12.1 | | 5.0 | 7% | | 07/25/96 20:47 | 9836 | | | 07/25/96 21:24 | 10161 | 135.8 | | | 3.9 | 1% | | 07/25/96 21:22
07/25/96 21:46 | 9636 | | | 07/25/96 21:48 | 9630 | 137.0 | 21.8 | 1 | | 1% | | 07/26/96 20:35 | 10286 | | | 07/26/96 20:38 | 10632 | 133.2 | 5.1 | | | -2% | | 07/26/96 20:47 | 10186 | | | | 10103 | 136.9 | 4.7 | | | 6% | | 07/26/96 21:08 | | | 6 | | 10164 | 137.5 | | | | 5% | | 07/26/96 21:22 | | | | | 9700 | 139.6 | | | | 2% | | 07/26/96 21:47 | | | | | 9529 | 138.4 | | | | -1% | | 07/26/96 21:58 | | | | | 9710 | 134.5 | | | | 7% | | 07/27/96 05:10 | | | | | 10074 | 137.9 | | | | | | 07/27/96 05:33 | | | | | | 133.6 | 17.3 | | | -2% | | 07/27/96 06:51 | | | | | | 135.3 | | | | -1% | | 07/27/96 12:51 | | | | | 9721 | 139.7 | | | | | | 07/27/96 13:26 | | | | | | 134.4 | | | | | | 07/30/96 05:15 | | | | • · · · · · · · · · · · · · · · · · · · | 9781 | 140.1 | | | | -18% | | 07/30/96 05:38 | | | | 07/30/96 05:41 | 10744 | | | | | | | 07/30/96 06:22 | | | | | | 133.3 | | • | | | | 07/30/96 06:29 | | | | | 10752 | | | R | | | | 07/30/96 08:19 | | 140.2 | : 6 | 07/30/96 08:22 | 10307 | 133.1 | 6.1 | -4% | 7.1 | -2% | | | Table 2.4 Detail Flight Record Comparison Difference | | | | | | | | | | | |----------------|---|-------|------|----------------|---------|-------|------|------|-----|------|--| | Pilo | t Recor | d | | HUN | IS Reco | rd | | | | | | | Flight Start | GW | CG | Time | Flight Start | GW | CG | Time | GW | CG | Time | | | Filght Start | LB | IN. | Min. | | LB | IN. | Min. | LB | IN. | | | | ATIONION 00:00 | 9600 | 140.1 | 7 | 07/30/96 08:29 | 10524 | 134.0 | 6.3 | -9% | 6.1 | 11% | | | 07/30/96 08:26 | | 140.1 | 6 | 07/30/96 21:46 | 10068 | 139.3 | 8.9 | 1% | 1.1 | -33% | | | 07/30/96 21:45 | 10156 | 139.9 | 14 | 07/30/96 22:02 | 10219 | 137.0 | 14.9 | -1% | 2.9 | -6% | | | 07/30/96 22:00 | 10146 | | 8 | 07/30/96 22:26 | 10441 | 136.3 | 9.4 | -2% | 3.6 | -15% | | | 07/30/96 22:24 | 10200 | 139.9 | 14 | 07/30/96 22:44 | 9721 | 138.7 | 11.6 | 0% | 2.2 | 21% | | | 07/30/96 22:42 | 9676 | 140.9 | | | 9796 | 140.9 | 14.3 | 14% | 0.0 | -9% | | | 07/31/96 05:55 | 11206 | 140.9 | 13 | 07/31/96 06:24 | 11124 | 131.6 | 14.3 | -10% | 8.7 | 19% | | | 07/31/96 06:20 | 9956 | 140.3 | 17 | | 10239 | | 17.5 | -4% | 4.4 | -3% | | | 07/31/96 06:42 | 9816 | 140.7 | 17 | | 11417 | | 15.8 | -6% | 4.3 | 1% | | | 07/31/96 07:10 | 10786 | 138.2 | | 07/31/96 07:40 | - | | 5.8 | -5% | 4.1 | -48% | | | 07/31/96 07:38 | 9336 | 139.2 | | | | | _ | 0% | 4.4 | -24% | | | 07/31/96 21:43 | 10161 | 140.3 | | | _ | | 14.4 | -4% | 5.7 | -3% | | | 07/31/96 22:00 | 10141 | 139.8 | _ | | _ | | _ | E . | 3.9 | -26% | | | 07/31/96 22:24 | | 140.4 | | | | | _ | 1 | 5.7 | 9% | | | 07/31/96 22:38 | 9661 | 140.7 | | | 10378 | | | 1 | 3.6 | | | | 08/01/96 06:02 | 11900 | | _ | | | _ | | | 4.0 | | | | 08/01/96 06:20 | | 139.0 | | | | | _ | 1 | 5.5 | | | | 08/01/96 06:42 | _ | 140.6 | 27 |
08/01/96 06:44 | 10670 | 135.1 | 25.9 | 1270 | 0.0 | | | Figure 2.2 Flight Duration Correlation Figure 2.3 Cumulative Flight Duration ## 3. Selected Components This section discusses the four PSE's that were selected for analysis. The PSE's selected comprise the following components: - 1. Rephase lever (Figure 3.1) - 2. Collective Lever (Figure 3.2) - 3. Main Rotor Spindle (Figure 3.3) - 4. Main Rotor Yoke (Figure 3.4) The part service history of the PSE's is presented in support of the assumptions made for the initial flaw sizes used for the damage tolerance analysis and includes the service history, e.g., failures, redesigns, configuration changes, process changes, Advisory Service Bulletins (ASB's), Airworthiness Directives (AD's), reports and other design and manufacturing actions. As part of this study, the documented service history of the four PSE's was reviewed for premature component removal. The source of the data for this study was either the customer Discrepancy and Malfunction Report (DMR) or documentation of service returned components using BHTI Field Investigation Reports for all design derivatives. In the case of DMR's, BHTI maintains a computer database that summarizes the information from the written document. A total of 877 DMR's were reviewed by this method beginning with the introduction of the Model 412 helicopter in 1981. A request was forwarded to the Field Investigation Laboratory to provide reports on any of the four study components that had been evaluated during the same period. Table 3.1 is a summary of the findings of this inquiry. The reasons for component removal are divided into broad categories for the purposes of this study. Generally, an attempt has been made to separate and note categories involving physical discrepancies/damage to the component whether manufacturing induced or service induced. Although it was hoped that descriptive information concerning the discrepancies/damage could be gathered, in the vast majority of cases it simply was not noted on the DMR's. This suggests an improvement to the DMR reporting system might be in order. Most of the descriptions were general and not informative from a technical perspective. A sketch or drawing of the component with documented discrepancies is needed as part of the DMR reporting procedure to accurately classify the component anomalies. The total number of DMR's reviewed may not represent all components that were removed prematurely, although all component and component design derivatives are included in this study. Generally, a DMR is written by the customer as a means of obtaining warranty credit towards a replacement part. In the case of the yoke, a large number of components were removed in response to a manufacture's bulletin or an FAA Airworthiness Directive or both. In the case of the spindle, a large number of the parts in the "other" category were removed due to premature deterioration of the elastomeric feathering bearing or replacement with an improved part. **Table 3.1 Part Service History** | Topic | | Rephase
Lever | Collective
Lever | M/R Spindle | M/R Yoke | |--|--------------------------------|-------------------------|---------------------|---------------------------------------|---| | Removal Hours | | 0 | 0-6424 | 0-3159 | 0-4980 | | Manufacturing Problem
Metal Fatigue
Bulletin or AD | | 4
11 | 5 | 1 | 6
2
204 | | Mechanical
Damage | Scratches
Wear
Corrosion | | 7 | 1
51 | 1 | | Other | | 0 | 1 | 582 | 0 | | Total Parts | | 15 | 13 | 635 | 214 | | CR&O
Limit -
Inches | Scratches
Wear
Corrosion | 0.005
.002
0.0025 | 0.010
-
0.005 | 0.005 to 0.010
-
0.005 to 0.010 | 0.005 to 0.010
0.002
0.005 to 0.010 | The rephase lever is manufactured from a 7075-T73 aluminum forging, Figure 3.1. The rephase lever pivots on a rotating hub and provides a reindexing of pitch link to the swashplate by offsetting the attach points. Swashplate motion is imparted to the rephase lever via a tubular link or a drive link. This motion is then transferred to the rotor by the pitch link with the rephase lever as the intermediate mechanism. The majority of the DMR's for the rephase lever resulted from bulletins, which provided an improved version of the design. The collective lever is manufactured from a 7075-T73 aluminum forging, Figure 3.2. The collective boost actuator attaches at the apex of the lever. The lever pivots about an axis common to a lug situated on the swashplate support. The ends of the legs attach to the collective sleeve to impart mean blade angle changes. The majority of the DMR's for the collective lever involved joint wear as the cause of replacement. Parts returned to manufacturer that would not install correctly due to accumulation of adverse tolerances are included in the table. No corrosion reports were received. The original spindle design (Figure 3.3) was manufactured from SAE 4340 alloy steel and was protected from corrosion by an applied surface finish. The elastomeric feathering bearing was mechanically attached to the spindle by means of a bonded inner race. The pitch horn is splined to the end of the spindle. The spindle exhibited corrosion in the pitch horn attachment area as a result of the corrosion protection wearing away. Four of the 51 DMR's reported corrosion on the order of 0.1 mm (0.0039 inch) in the pitch horn attachment area of the spindle where no corrosion was allowed per the Component Repair and Overhaul Manual (CR&O). Mechanical or corrosion damage of 0.005 inch is allowed around the blade attachment lugs while 0.010 inch mechanical or corrosion damage is allowed elsewhere. The majority of the 582 DMR's in the "other" category resulted from a gradual deterioration of the elastomeric feathering bearing that was detected either visually or as a change in rotor vibration characteristics. Later designs of the spindle were made from 15-5PH stainless steel to eliminate the corrosion problem. The elastomeric feathering bearing is molded directly to the spindle surface allowing the elastomeric element to be increased in size to reduce strains. In the case of the main rotor yoke (Figure 3.4), the original design was initially certificated with a 5000 hour life. In two separate incidents, the yoke sustained a partial flexure fatigue crack (non-catastrophic) after ground static compressive overloads due to high surface winds. The high loads compressively yielded the shotpeened surface of the 6AL-4V annealed titanium flexure, nullifying the benefits of the peening. A 700 hour service life was established for these early yokes by manufacturer's bulletin and FAA AD. The yoke was redesigned to solve this problem. The yoke flexure was lengthened, the material changed to 6AL-4V BSTOA and a dynamically activated droop stop incorporated to protect the yoke flexure against high beamwise loads due to natural winds or winds generated by other helicopters operating nearby when the rotor was not operating. In summary, this study of the 877 DMR exhibits of the four subject components revealed several interesting facts. In the 15 years since the Model 412 was fielded, not one accident has been caused by fatigue. The maintenance surveillance currently in place can detect potential problems such as wear, corrosion, etc., before they become serious. The damage limits published in the CR&O manual are realistic with respect to damage tolerance or crack growth thresholds. This data supports the 0.005 inch flaw size used in the crack growth study presented in this report, particularly as it applies to corrosion damage. Figure 3.1 Rephase Lever Geometry Figure 3.2 Collective Lever Geometry Figure 3.3 Main Rotor Spindle Geometry Figure 3.4 Main Rotor Yoke Geometry #### 4. Fatigue Life Analysis #### 4.1 Analysis Procedure The fatigue analysis procedure of the ASHM data was performed on a basis that is consistent with the certification of the selected PSE's. Figure 4.1 shows a simplified overview of this procedure. The methodology remains unchanged from that used in the certification process. The only variation in assumptions from the certification procedure is the use of measured time-at-condition in place of the estimated time-at-condition. In addition to the certification procedure, component lives were calculated that include altitude effects. - 1. Time-at-condition is determined from analysis of the measured flight parameters using flight condition recognition (FCR) software (see Reference 1 for FCR description). - 2. The loads for each condition are taken from the FAA certification load survey. No additional loads are used in the HUMS data processing. - 3. Component damage is calculated by combining the loads with the time-at-condition using FAA certification endurance limits. The certification methodology uses an assumed worst case spectrum of time-at-condition to determine the life of helicopter components. When the FCR software processes recorded data, there is a small percentage of flight time that is not within the parameter set associated with any of the defined conditions. This time is considered to be unrecognized and is assigned the most damaging condition within the domain in which the event occurred. The FCR software used in Reference 1 to process the GCM data was enhanced to reduce the time in unrecognized flight conditions. It was observed that the percentage of unrecognized condition reduced significantly when the ASHM data was processed though the revised FCR software. Reprocessing of the 450 hours of the GCM data was beyond the scope of the current effort, so the assumption was made that the software enhancements incorporated would have reduced the percentage of unrecognized maneuvers to an amount similar to that seen for the ASHM. Therefore, the percentage of unrecognized condition was reduced for the GCM to approximately the level
seen in the ASHM data by redistributing the excess unrecognized time in the proportion of the recorded spectrum, and the lives were recomputed on that basis. The contribution of unrecognized conditions to total damage is indicated in Table 4.1 through Table 4.4 as Unrecognized Damage percentage (URD %). #### 4.2 Life Limitations As shown in Figure 4.2, a potential benefit from usage monitoring is part retirement extension if the actual usage severity is milder than the basis for certification. However recommended retirement lives derived for HUMS-equipped aircraft may be subject to limiting factors other than fatigue calculations. For example, maximum lives or minimum usage rates may be restricted due to reasons of practicality, including, but not limited to, corrosion, wear and component sensitivity to load variation. Figure 4.1 Certification and HUMS Methodologies Figure 4.2 HUMS Usage # 4.3 Rephase Lever Study The Rephase Lever was analyzed for safe life in two configurations. The earlier configuration was certificated with a retirement life of 1,250 hours and employed cycle counting in the analysis of transitory maneuvers to achieve this life. The replacement part was a design improvement over the earlier version and had a life goal of 5,000 hours. This goal was achieved, and the part certified, without resorting to cycle counting and is thus very conservative. When the redesigned part was analyzed using the ASHM spectrum for this study, the calculated life was 920 hours using the most conservative approach without the benefit of cycle counting. If cycle counting were to be used for the transient maneuvers (as were done for certification of the earlier configuration), the calculated life would increase to 18,430 hours with the ASHM spectrum and to 78,000 hours using the certification spectrum. In summary, the calculated safe lives for the two configurations are as follows: #### Earlier configuration Calculation Basis: Cycle counted transient conditions Certification spectrum 1,250 hours ASHM spectrum 1,380 hours #### Redesigned configuration Calculation Basis: No cycle counting Certification spectrum ASHM spectrum 920 hours #### Redesigned configuration Calculation Basis: Cycle counted transient conditions (as Earlier configuration) Certification spectrum 78,000 hours ASHM spectrum 18,430 hours The process of cycle counting calculates the damage due to each recorded cycle within a record. The damage rate is then calculated from the sum of the individual cycle damages and the record duration, this is only used for transitory maneuvers. Analysis without cycle counting is a more conservative approach where the entire record is examined and the most damaging cycle is assumed to occur at each and every cycle of that record. Steady state conditions are rarely, if ever, cycle counted. ## 4.4 Analysis Results Analysis results comparing fatigue safe lives for ASHM, GCM and certification data are summarized in Figure 4.3 through Figure 4.6 and in Table 4.1 through Table 4.4. The rate at which life is being consumed relative to certification is referred to as the component "Clock Rate." If usage indicates that the part is using life faster than certification, i.e. has a reduced life, then the part is said to have a "fast clock." The component safe lives were calculated without regard to altitude for direct comparison to the certification data. Certification does not employ an altitude breakdown because the operating altitude is unknown. Components are certificated using the most severe altitude within any condition. However, in this study, pressure altitude (H_p) and Outside Air Temperature (OAT) are recorded by the HUMS system allowing for the calculation of Density Altitude (H_d), which is required to take credit for altitude. Load level survey data, used as the basis for all life calculations, does not contain all data at all altitudes. For each condition, the survey contains records at 3000 ft and records at 6000 ft and/or 12000 ft for each of the Gross Weight, CG combinations flown. Therefore safe lives were also calculated using a split between high (>3000 ft H_d) and low (≤3000 ft H_d) altitude data to ensure multiple records from which to select the most severe condition. This approach deviates from results previously published for the GCM data (Reference 1) which employed a full altitude breakdown. Calculations performed without an altitude split compare directly with certification data. Comparison of spectra with and without an altitude split indicate additional potential benefits due to HUMS. The results of the comparison of the ASHM and GCM fatigue lives to the certification mission are as follows: - Rephase Lever With no altitude split, GCM calculated lives are higher and ASHM lower than the certification, but with altitude split, both are much higher. (Note that two configurations were analyzed, see Section 4.3.) - Collective Lever With no altitude split, both GCM and ASHM lives were about 40% greater than certification and much higher with altitude split. - Main Rotor Spindle With no altitude split, GCM is higher, and ASHM is lower, than certification and both are higher with altitude split. - Main Rotor Yoke With no altitude split, the GCM is higher, and the ASHM lower, than certification. With altitude split, the GCM is higher and the ASHM about the same as certification. Figure 4.3 Effective Usage Rephase Lever Table 4.1 Rephase Lever Calculated Fatigue Life | | • | Calc
Hours | % of
Cert | Clock
Rate ^{1,2} | URD ³ | |-------------------|---|-----------------------|---------------------|------------------------------|------------------| | No Altitude Split | Certification Mission Gulf Coast Mission Atlanta Short Haul Mission | 5,000
9,710
920 | 100%
194%
18% | 100%
51%
543% | 0%
8%
1% | | Low/High Altitude | Gulf Coast Mission
Atlanta Short Haul Mission | 24,610
15,620 | 492%
312% | 20%
32% | 8%
1% | - 1) Clock Rate the rate of life consumption relative to certification. - 2) Limitations (see Section 4.2) may apply that restrict usage clock rate. - 3) URD % Damage contribution from Unrecognized conditions Figure 4.4 Effective Usage Collective Lever Table 4.2 Collective Lever Calculated Fatigue Life | | Table 4.2 Conecuve Dever Cal | Calc
Hours | % of
Cert | Clock
Rate ^{1,2} | URD ³
% | |-------------------|---|----------------------------|----------------------|------------------------------|-----------------------| | No Altitude Split | Certification Mission Gulf Coast Mission Atlanta Short Haul Mission | 10,000
14,160
14,010 | 100%
142%
140% | 100%
71%
71% | 0%
7%
<u>5%</u> | | Low/High Altitude | Gulf Coast Mission Atlanta Short Haul Mission | 27,410
174,220 | 274%
1742% | 36%
6% | 6%
8% | - 1) Clock Rate the rate of life consumption relative to certification. - 2) Limitations (see Section 4.2) may apply that restrict usage clock rate. - 3) URD % Damage contribution from Unrecognized conditions Figure 4.5 Effective Usage Main Rotor Spindle Table 4.3 Main Rotor Spindle Calculated Fatigue Life | | • | Calc
Hours | % of
Cert | Clock
Rate ^{1,2} | URD ³
% | |-------------------|----------------------------|---------------|--------------|------------------------------|-----------------------| | No Altitude Split | Certification Mission | 10,000 | 100% | 100% | 0% | | | Gulf Coast Mission | 14,440 | 144% | 69% | 11% | | | Atlanta Short Haul Mission | 3,030 | 30% | 330% | 2% | | Low/High Altitude | Gulf Coast Mission | 28,840 | 288% | 35% | 18% | | | Atlanta Short Haul Mission | 32,810 | 328% | 30% | 16% | - 1) Clock Rate the rate of life consumption relative to certification. - 2) Limitations (see Section 4.2) may apply that restrict usage clock rate. - 3) URD % Damage contribution from Unrecognized conditions Figure 4.6 Effective Usage Main Rotor Yoke Table 4.4 Main Rotor Yoke Calculated Fatigue Life | • | Table 4.4 Main Rotor Toke Ca | Calc
Hours | % of
Cert | Clock
Rate ^{1,2} | URD ³ | |-------------------|---|--------------------------|---------------------|------------------------------|------------------------| | No Altitude Split | Certification Mission Gulf Coast Mission Atlanta Short Haul Mission | 5,000
18,170
3,360 | 100%
363%
67% | 100%
28%
149% | 0%
11%
<u>2%</u> | | Low/High Altitude | Gulf Coast Mission
Atlanta Short Haul Mission | 26,510
4,760 | 530%
95% | 19%
105% | 10%
3% | - 1) Clock Rate the rate of life consumption relative to certification. - 2) Limitations (see Section 4.2) may apply that restrict usage clock rate. - 3) URD % Damage contribution from Unrecognized conditions #### 5. Damage Tolerance Analysis The critical locations and critical flaw sizes were established for each of the PSE's, as well as the maximum probable initial flaw size. The service history of the PSE's is provided in Section 3 of this report. This is only a preliminary analysis to determine relative crack growth rate for three different spectra. The analysis was performed for the time-at-condition spectra from the Certification Spectrum and spectra generated from the HUMS data collected during the Gulf Coast Mission and Atlanta Short Haul Mission. Analysis was generated for initial flaw sizes (I₀) of 0.005 inch representing a manufacturing durability limit and 0.015 inch to represent an in-service detectable flaw. The individual part fatigue test reports were used to determine the critical locations for the crack growth analysis. Analysis was performed at the failure location as indicated by test results. The certification load/stress spectrum and crack growth based analysis methods, CRKGRO (Reference 2) were used to calculate the inspection threshold and
the subsequent inspection intervals. #### 5.1 Rephase Lever Material: Aluminum Alloy 7075-T73 Figure 5.1 presents the Rephase Lever section; the geometry was described in Figure 3.1. Crack growth analysis was performed for the Rephasing Lever at Lug 2, section A-A. Loads normal to the lug were not considered in this analysis, therefore a damage tolerance life only applies to the loads in the plane of the lug. Mean and oscillatory Pitch Link loads were used to generate the loading spectra for the crack growth analysis. Figure 5.1 Rephase Lever Section at Section A-A #### 5.2 Collective Lever Material: Aluminum Alloy 7075-T73 Detail of the analyzed section is presented in Figure 5.2. The Collective Lever part geometry is presented in Figure 3.2. Crack growth analysis was performed at section A-A of Figure 3.2. The Collective Boost Tube mean and oscillatory load spectrum was used to derive the crack growth spectra. Figure 5.2 Collective Lever Section A-A # 5.3 Main Rotor Spindle Material: SAE 4340 Alloy Steel Main Rotor Spindle section, geometry and part detail are presented in Figure 5.3. Crack growth analysis was performed for the Main Rotor Spindle at the blade attachment lug (Sta 32.0) section A-A of Figure 3.3. Blade beam and chord mean and oscillatory bending moments were the reference loads used to generate the crack growth spectra. Figure 5.3 Main Rotor Spindle Section A-A #### 5.4 Main Rotor Yoke Material: Titanium 6AL-4V The analyzed section is presented in Figure 5.4 and the Main Rotor Yoke geometry is presented in Figure 3.4. Crack growth analysis was performed at blade station 4.8, section A-A. Figure 5.4 Main Rotor Yoke Section A-A Table 5.1 Flight Hours to Critical Crack Length - 0.005 inch Initial Crack | Table 5.1 Fight Hours | Certification | Gulf Coast | Atlanta Short | |--|--------------------------------------|--|------------------| | | Mission | Mission | Haul Mission | | Rephase Lever
Collective Lever
Main Rotor Spindle
Main Rotor Yoke | No Growth
192
No Growth
160 | No Growth
271
No Growth
7,790 | 554
No Growth | Table 5.2 Flight Hours to Critical Crack Length - 0.015 inch Initial Crack | Table 5.2 Fight Hours | Certification Mission | Gulf Coast
Mission | Atlanta Short
Haul Mission | |--|-----------------------|------------------------|-------------------------------| | Rephase Lever
Collective Lever
Main Rotor Spindle
Main Rotor Yoke | 78
13
143
20 | 259
16
104
50 | 31
2,557 | Figure 5.5 Rephase Lever - 0.015 inch Initial Crack Figure 5.6 Collective Lever - 0.005 inch Initial Crack Figure 5.7 Collective Lever - 0.015 inch Initial Crack Figure 5.8 Main Rotor Yoke - 0.005 inch Initial Crack Figure 5.9 Main Rotor Yoke - 0.015 inch Initial Crack Figure 5.10 Main Rotor Spindle - 0.015 inch Initial Crack ## 6. Measured Load Comparison A very limited set of oscillatory loads data were measured during the ASHM. These data comprise the Collective Boost Tube, Left Cyclic Boost Tube, and Right Cyclic Boost Tube. These data were collected to provide reference data to indicate the level of conservatism that is built into the analysis. These data was analyzed to determine the frequency of occurrence at various load levels and were processed to generate the measured load exceedance curves presented in Figure 6.1 through Figure 6.3. The curve represents the number of times per hour a given oscillatory load will exceed a given level, e.g. 47 cycles/hour exceeded 200 lb for the collective boost tube (Figure 6.1). Recorded data were extracted from the load level survey database and processed with the time at condition measured for the three available missions. These data were then processed as above and plotted for comparison in Figure 6.1 through Figure 6.3. This comparison indicates that the measured cumulative load data is approximately two orders of magnitude lower than that predicted by the flight load survey data in the region at and above the endurance limit. The Left and Right Boost Tube plots exhibit similar characteristics. Figure 6.1 Collective Boost Tube Load Comparison Figure 6.2 Left Boost Tube Load Comparison Figure 6.3 Right Boost Tube Load Comparison ## 7. Sensor and Equipment Investigation Based on the results of the ASHM and GCM studies, an investigation was conducted of sensors and equipment that could potentially enhance usage monitoring. These include gross weight and center of gravity measurement, a cockpit display, and a Global Positioning System (GPS). The results are discussed in this section. ## 7.1 Gross Weight An investigation was undertaken to evaluate methods of determining accurate aircraft gross weight. The data collected in the Gulf Coast mission used strain gauged aft cross tubes and forward landing gear attachment fittings to measure gross weight. The only sensor added for the ASHM study was a strain gauge on the Lift Link, the remaining sensors had been installed for the Gulf Coast Mission. The use of a strain gage on the Lift Link was examined to see if it would improve the accuracy of the gross weight algorithm, as this had provided promising results in preliminary studies. However, it was determined that the interaction between the transmission mounts and the lift link became very difficult to predict when fore and aft cyclic stick was applied at the same time as collective stick. Initially efforts were made to integrate these effects and then to eliminate them. A good correlation could only be achieved when there was little or no collective applied. Under these circumstances, the results showed no significant improvement over those being predicted by the improved gross weight algorithm without the Lift Link. The gross weight prediction algorithm used in this study is based upon weight on gear loads with a correction for rotor RPM and collective pitch. There is good correlation between HUMS calculated and pilot recorded gross weight. A cross plot of the gross weight data is presented in Figure 7.1. The revised gross weight algorithm improved the prediction such that the preponderance of the data falls within a 500 lb variation band. An investigation of some of the outlying points revealed a possible "time shift" between data entered by the pilot and that recorded by HUMS. This phenomenon is indicated by the ellipses in Figure 7.2. A detailed study of the available data suggested that the HUMS data is correct, and somehow the written data became shifted. # 7.2 Center of Gravity The correlation of pilot vs. HUMS CG was disappointing because it did not correlate as well as the gross weight as shown in the cross plot of the ASHM CG data presented in Figure 7.3. It was decided not to investigate or refine the algorithms, as CG is not used in the present methodology. The CG data, however, would be useful if displayed to the crew, as it would assist them in complying with flight envelope limits. Further improvements in the gross weight algorithm may give better results. ## 7.3 Cockpit Display The preferred method of determining the aircraft gross weight is to have the pilot punch in the data at or before takeoff. This method is inexpensive and the timeliness of data entered into the recording system at flight start should ensure that the "data shift" experienced during the ASHM is avoided. However, the use of an accurate gross weight measurement system would also eliminate such problems. ## 7.4 Global Positioning System Global Positioning System (GPS) data was not recorded during the ASHM. It was anticipated that the GPS would provide data that would allow refinement or replacement of data collected by multiple sensors. The number of possible parameters available from GPS is still not known nor are their resolutions. It was anticipated that GPS would provide accurate aircraft track and possibly altitude data that could be used to improve the turn, climb, and velocity portions of the HUMS algorithms. It is most likely that forward groundspeed could be derived from GPS. The flight path of the aircraft would be known but not the forward velocity component. The current methodology uses calibrated airspeed. Figure 7.1 Gross Weight Correlation Figure 7.2 Gross Weight Detail Figure 7.3 Center of Gravity Correlation #### 8. Guidelines for Certification For transport category rotorcraft governed by FAR 29, the requirement is that all new rotorcraft be equipped with a flight data recorder (See Paragraph 29.1459 of Reference 3). At the present time, the FAA has no specific regulatory requirement that makes a HUMS mandatory. There is a draft of an advisory circular currently being worked by a joint FAA/JAA task force that outlines what constitutes a HUMS and contains suggested certification methods. In accordance with FAR 21 the system may be certificated by the manufacturer as part of the Type Certificate (TC) of a production helicopter or as a Supplemental Type Certificate (STC) by the manufacturer, a modifier, an equipment manufacturer, or an operator. If the system is to be retrofitted to existing aircraft, the most logical method would be an STC as a kit. This would not preclude the system from being installed on the production line in a new aircraft by the manufacturer. No matter what the certification vehicle, TC or STC, a complete set of engineering drawings and specifications must be submitted to the certifying agency. The applicant must show that the addition of the onboard equipment would in no way be a hazard to the safe operation of the aircraft. The FAA has suggested using AC No. 25.1309-1A (Reference 4) as a guideline for safety and hazard analysis in connection with the installation of a HUMS. The hazard analysis covering both airborne and ground based aspects should be submitted to the certifying agency. The
certification process for a HUMS differs somewhat from current processes because of the use of ground based equipment including computers and software. Certification involves addressing the installation of the equipment, maintenance credit validation, and continuing airworthiness. These aspects are discussed in some detail in an American Helicopter Society paper (Reference 5). The paper suggests the following steps toward obtaining certification of a HUMS: - 1. Establish a certification project with the responsible certifying authority. - 2. Develop an end-to-end system design concept. - a) Define the desired maintenance credits. - b) Identify the functional partitioning between airborne and ground. - c) Identify the functional partitioning between HUMS and the maintenance system. - d) Select Commercial Off The Shelf (COTS) software and hardware with an established service history. - e) Clearly identify the end of the credit function (algorithm). - f) Define a user interface that will meet the desired objectives. - 3. Prepare and submit hazard assessments. - a) For the airborne installation. - b) For the maintenance credits expected or desired. - 4. System development: - a) Develop hardware to meet the system qualification requirements. - b) Develop application software to the required DO-178B levels. - 5. Test the application in the COTS environment. - 6. Validate the COTS using an independent means of verification. - 7. Develop a user operating manual for the system defining credit requirements. - 8. Modify maintenance and or flight manuals for the proposed credits. - 9. Certify the airborne installation. - 10. Conduct a Controlled Service Introduction (CSI) for credit validation. - 11. Helicopter operator to obtain credit approval for his aircraft. Since one of the objectives of the HUMS usage function is to obtain credit, such as component life extensions, it is important to show end-to-end integrity of the system. Figure 8.1 (taken from Reference 5) depicts a HUMS maintenance concept. The system records all usage parameter raw time history data onboard the aircraft. The data are transferred to a ground station for processing to determine the effective component time. These data are then input to the existing operator maintenance data base. The level of airborne and ground based software criticality required must be addressed in addition to the use of (COTS) software. The certification and implementation of a commercially viable HUMS will require the close cooperation of the applicant, the certifying agency, and the manufacturer. The HUMS concept is relatively new on the scene and must be approached cautiously especially regarding life extensions. The system design and installation, validation of the procedure for obtaining credit, and continuing airworthiness aspects including operator procedures and training must be complete and thorough. Of utmost importance is the need to clearly establish airborne and ground based software criticality levels and provide rationale and justification for the level chosen. Figure 8.1 HUMS maintenance concept ## 9. Economic Impact The economic impact of incorporating a HUMS on a Model 412, based on cost estimates from the Operators Evaluation of a HUMS (Reference 6) are presented in this section. An attempt to represent more realistically the effects of practical limitations (Section 4.2) on the retirement extension, including causes for retirement other than safe life limitations, has been made. This was achieved by limiting the safe life derived from measured spectra to twice that derived from the certification spectrum, this is referred to as "double life limitation." After stating these assumptions the estimated operating cost savings are summarized in Table 9.1 without life limitation and Table 9.2 with a double life limitation. ### Assumptions: - 1. Model 412 total cost per Flight Hour (FH) is \$615.89 - a) Parts replacement cost is \$254.82/FH - b) Labor cost is \$42.94/FH - c) Fuel/Lube, Powerplant cost is \$318.13/FH - 2. Cost of hub parts based on 5000 hours of operation is \$221,891.08 - a) Two Main Rotor Yokes cost \$69,932 and have a 5,000 hour Retirement - b) Four Main Rotor Spindle Assemblies cost \$85,590 and have a 10,000 hour Retirement - 3. Usage of other life limited components follow the pattern of the yoke and spindle **Table 9.1 Without Life Limitation** | | Yoke
Rate | Spindle
Rate | Cost/Hr | %Saving | |------------------------|--------------|-----------------|---------|---------| | Certification Spectrum | 1.00 | 1.00 | \$22.55 | - | | GCM Spectrum | .28 | .70 | \$9.26 | 59% | | ASHM Spectrum | 1.49 | 3.36 | \$49.61 | (120%) | | GCM (Altitude Split) | .19 | .35 | \$5.65 | 75% | | ASHM (Altitude Split) | 1.05 | .31 | \$17.34 | 23% | **Table 9.2 With Double Life Limitation** | | Yoke | Spindle | Cost/Hr | %Saving | |------------------------|------|---------|---------|---------| | Certification Spectrum | 1.00 | 1.00 | \$22.55 | - | | GCM Spectrum | .50 | .70 | \$12.99 | 42% | | ASHM Spectrum | 1.49 | 3.36 | \$49.61 | (120%) | | GCM (Altitude Split) | .5 | .5 | \$11.28 | 50% | | ASHM (Altitude Split) | 1.05 | .5 | \$18.97 | 16% | #### 10. Mini HUMS Two possible simplified or "mini-HUMS" configurations were investigated. The first configuration of a simplified HUMS attempted to reduce the number of sensors and therefore the complexity and the cost of the system by allowing larger groups of conditions to be lumped together. The second configuration took a simplistic approach, based upon other analysis within this contract. The certification spectrum was applied to time at altitude with the FCR reduced to high or low altitude determination, essentially the HUMS became a recording altimeter. This had the added advantage that unrecognized conditions did not contribute to the damage as the certification spectrum is fully defined. ### 10.1 Simplified HUMS The simplified methodology involves broadening the conditions that are recognized by the system. The suggested configuration and parameters are listed in Table 10.1 and a broad category breakdown is shown in Table 10.2. The safe lives resulting from the implementation of this analysis (Table 10.3) did not agree well with the results obtained from the full-up HUMS. This is due to the lack of correlation between the broad categories and the certification spectrum. The indications therefore are that the categories need be to refined and that broadening them does not provide sufficient useable data. An overview of the simplified procedure follows: - 1. Measure time in broad condition types, - 2. Accumulate certification damage for broad conditions, and - 3. Factor damage sums from 1 and 2 by the ratio of measured time to the time from the certification spectrum. Table 10.1 Simplified Mini HUMS configuration | Parameter | Status | Note / Requirement | |---------------|----------|-------------------------------------| | Gross Weight | Add | Measured or Pilot Input | | Nz | Add | Load Factor and Symmetric Maneuvers | | Roll | Add | Asymmetric Maneuvers | | Squat Switch | Add | Ground/Air Time | | Airspeed | Add | | | Altitude | Add | | | Rotor RPM | Existing | | | Engine Torque | Existing | Torque Cycle count | Table 10.2 Simplified Mini HUMS | Table 10.2 Simpl | illed Willi HUMS | |--------------------|------------------| | Full up HUMS | Mini Hums | | Hover | \ | | Side Flight | 1 Hover time | | Rear Flight | | | Etc. | | | Level Flight .4Vh | \ | | Level Flight .6Vh | 1 | | Level Flight .9Vh | I Level | | Level Flight 1.0Vh | Ţ | | Etc. | | | Right Turn .6Vh | \ | | Right Turn .9Vh | ! | | Left Turn .6Vh | l Maneuver | | Left Turn .9Vh | j
, | | Etc. | | | Take Off | \ . = . | | Landing | ! Events | | Engine Start | 1 | | Etc. | | Table 10.3 Simplified Mini HUMS Fatigue Life | | Certification (Hours) | GCM
(Hours) | ASHM
(Hours) | |--------------------|-----------------------|----------------|-----------------| | Rephase Lever | 5,000 | 3,360 | 2,280 | | Main Rotor Spindle | 10,000 | 6,060 | 5,400 | | Main Rotor Yoke | 5,000 | 18,870 | 6,720 | ### 10.2 Recording Altimeter Use the certification time at condition with the recorded time at altitude to determine the usage. This is equivalent to producing two certification data sets, one for below 3000 ft and another for at or above 3000 ft. The Fatigue Life calculations were reprocessed with the above assumptions and the results presented below. This method has the advantage that there is very little required equipment, little or no deviation from the certification methodology and demonstrates significant life extension. Simplicity is the key to this system as it makes no attempt to measure any time at condition, only time at altitude, and therefore is simple to verify. Failures of the system would involve reverting to the existing certification data, i.e. no credit for altitude. Table 10.4 Recording Altimeter Fatigue Life | | _ | Hours | Life | Clock | |-------------------------|-----------------------------------|--------|-------|-------| | Rephase Lever | No altitude split (Certification) | 5,000 | 100% | 100% | | | Gulf Coast Altitude Split | 12,910 | 258% | 39% | | | Atlanta Short Haul Altitude Split | 80,320 | 1606% | 6% | | Collective Lever | No altitude split (Certification) | 10,000 | 100% | 100% | | | Gulf Coast Altitude Split | 20,730 | 207% | 48% | | | Atlanta Short Haul Altitude Split | 45,170 | 452% | 22% | | Main Rotor Spindle | No altitude split (Certification) | 10,000 | 100% | 100% | | | Gulf Coast Altitude Split | 19,000 | 190% | 53% | | | Atlanta Short Haul Altitude Split | 33,090 | 331% | 30% | | Main Rotor Yoke | No altitude split (Certification) | 5,000 | 100% | 100% | | | Gulf Coast Altitude Split | 5,760 | 115% | 87% | | | Atlanta Short Haul Altitude Split | 5,460 | 109% | 92% | **Table 10.5 Recording Altimeter Economics** | | Yoke | Spindle | Cost/Hr | %Saving | |---------------------------|------|---------
---------|---------| | No Altitude Split | 1.00 | 1.00 | \$22.55 | - | | Gulf Coast Altitude Split | 0.87 | 0.53 | \$16.71 | 26% | | ASHM Altitude Split | 0.92 | 0.30 | \$15.44 | 32% | #### 11. Conclusions The usage monitoring of the Atlanta Short Haul Mission (ASHM) during the summer Olympics using a HUMS was effective. Several significant conclusions can be drawn from this study. These are listed below: - 1. The ASHM usage data indicates a significantly different type of mission from the Gulf Coast mission and are as follows: - a. Much shorter flight duration - b. Many more maneuvers - c. Lower cruise airspeeds - d. A large portion of the operating time spent on the ground - 2. The FCR software was able to recognize the maneuvers associated with the ASHM operation. The percentage of unrecognized data was extremely low. - 3. The data sample for the ASHM is limited (approximately 17 hours of flight data) compared to the approximately 450 hours of flight data processed from the GCM. Because of the limited amount of data, care should be exercised regarding the mission characteristics presented. - 4. While improved over the Gulf Coast Mission result, the gross weight system accuracy is still not acceptable for cockpit use by the crew. The use of the keyboard entry of gross weight is still the preferred method until the gross weight system accuracy can be improved. - 5. The recorded cyclic and collective boost oscillatory loads verify the conservatism of the certification loads. - 6. No anomalies associated with sensors were observed in the data. - 7. The scripted flight was useful in trouble shooting and verifying the enhanced FCR algorithms. - 8. Although there was a potential cost benefit from using a HUMS during the ASHM, it was not as significant as for the Gulf Coast Mission. - 9. Since the four study components were designed and certificated to safe-life objectives, it was not unexpected that the inspection intervals indicated by the crack growth data were relatively low. - 10. Historical data for the four study components indicated that the current maintenance procedures are adequate to catch corrosion, scratches and wear. In the 16 years since the Model 412 was certificated, no catastrophic fatigue failure has occurred in any of the PSE's. - 11. To realize the maximum benefit from the FCR technique, it is recommended that a more refined load level survey is required. For example, the use of a low/high altitude split is justified from the current load level data. However, there are too many conditions that were not recorded during certification to consider a detailed altitude breakdown. Loads measured during the ASHM also suggest that the load level should include less severe categories of maneuvers and that the FCR should be refined to recognize the severity of maneuvers. In summary, the usage function of HUMS performed acceptably for the ASHM using the FCR technique. This study present comparisons of significantly different mission scenarios that must be covered presently by a single certification spectrum and has indicated that a HUMS with the usage function can be used to monitor a wide range of spectrum types. The crack growth lives calculated in this study indicate relatively short inspection intervals for components that were designed to safe-life methods. This is not unexpected since the crack growth threshold stresses at initial crack length of 0.015 inch used for damage tolerance are significantly lower than endurance limit stresses used for safe life. The recently certificated Model 430 was designed from the outset to be damage tolerant and uses a zero growth philosophy (no crack growth from a 0.015 inch flaw for any flight condition). No special inspections are required for the 430 components between normal overhauls. #### 12. Recommendations Usage monitoring should enhance safe life and damage tolerance methodologies. After compiling and reviewing the ASHM data, the following recommendations are offered: - 1. Further refinement of the Gross Weight system. - a. Use a controlled study using an instrumented aircraft to improve algorithms - b. Investigate a cockpit display of weight - c. Explore the use of an inflight sanity check for weight (hover or level flight) - 2. It would be useful to determine how the four PSE's in the study could be redesigned to a damage tolerant philosophy to meet a minimum 2500 hour inspection. Use FEM or measured stresses for these components to predict the required design changes. One of the most important results would be the component weight change required to meet the objective. - 3. The majority of the dynamic components for the Model 412 are shotpeened. It has been widely recognized that this is a benefit in terms of damage tolerance, particularly for small flaws. Crack growth data should be generated for a typical helicopter material using small coupons. The X-ray defraction technique would be used to quantify the residual stress values in the compressive zone thus permitting a correlation to be made between crack growth rate and compressive residual stress. - 4. The data from the ASHM points out the wide variation in mission types currently being flown by operators. This suggests that the HUMS equipped Model 412 used in this study should be used to acquire usage data for other missions. Suggested missions should include: (1) logging, (2) heli-ski operation, (3) emergency medical, and (4) law enforcement. These data would subsequently be used to evaluate component lives and inspection intervals using damage tolerance methods. - 5. The use of GPS has the potential to replace several sensors currently required for usage monitoring and should be pursued. GPS would be particularly useful for a mini-HUMS on smaller helicopters where cost is an important consideration. This will require a study to include the installation and operation of a HUMS equipped aircraft in concert with GPS equipment. Accuracy and reliability are key issues that must be resolved by the proposed study. - 6. Presently certification load level surveys are flown in a very conservative manner generally measuring data at the corners of the gross weight/c.g. envelope and at a minimum number of altitudes. Additionally, maneuvers are flown aggressively generally resulting in load magnitudes which are "top of scatter." The load level survey technique should be refined to investigate in more detail all aspects of the measurement of certification loads to take maximum advantage of the detailed spectrum information available from a HUMS equipped aircraft. A program should be undertaken to acquire this more refined loads data. These data could then be used to compare the four study component lives against the current methodology thus quantifying the benefits of a more complete load level matrix. The maneuvers should be flown multiple times by more than one pilot to investigate load variability. #### 13. References - 1 Dickson, B., Cronkhite, J., Bielefeld, S., Killian, L., and Hayden, R., "Feasibility Study of a Rotorcraft Health and Usage Monitoring System: Usage and Structural Life Monitoring Evaluation." ALR-CR-290 - 2 "A User Manual for a Detailed Level Fatigue Crack Growth Analysis Computer Code," AFWAL-TR-81-3093. - 3 Federal Airworthiness Regulations, Part 29 Airworthiness Standards: Transport Category Rotorcraft. - 4 Federal Aviation Regulations, Advisory Circular No. 25.1309-1A System Design and Analysis. - 5 "The Certification Process for Health and Usage Monitoring Systems" presented at the 53rd American Helicopter Society Forum, VA Apr. 29 May 1, 1997. - 6 Romero, R., Summers, H., and Cronkhite, J., "Feasibility Study of a Rotorcraft Health and Usage Monitoring System: Results of Operator's Evaluation." ALR-CR-289 | | | • | |--|--|---| | | | | #### REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503. | 1. AGENCY USE ONLY (Leave blank) | 2. REPORT DATE | 3. REPORT TYPE AND I | DATES COVERED | |---|--|-----------------------------|--| | | April 1998 | Fina | al Contractor Report | | 4. TITLE AND SUBTITLE | | 5. | FUNDING NUMBERS | | Operational Evaluation of a | Health and Usage Monitoring | System (HUMS) | WU-581-30-13-00 | | 6. AUTHOR(S) | | | NAS2-14115 | | o. Administry | | | 1L162211A47A | | J. Cronkhite, B. Dickson, W. | . Martin, and G. Collingwood | | | | 7. PERFORMING ORGANIZATION NA | ME(S) AND ADDRESS(ES) | 8. | PERFORMING ORGANIZATION | | | • | | REPORT NUMBER | | Bell Helicopter Textron Inc. | | | | | P.O. Box 482 | | | E-11180 | | Fort Worth, Texas 76101 | | | | | , | | | · | | 9. SPONSORING/MONITORING AGEN | NCY NAME(S) AND ADDRESS(ES) | 10 |). SPONSORING/MONITORING
AGENCY REPORT NUMBER | | U.S. Army Research Laboratory
Cleveland, Ohio 44135-3191 | | | | | and | | | NASA CR—1998-207409 | |
NASA Lewis Research Center | | | ARL-CR-420 | | Cleveland, Ohio 44135-3191 | | | DOT/FAA/AR-97/64 | | 11. SUPPLEMENTARY NOTES | | | | | Project Manager, Robert F. F. code 0300, (216) 433-3969. | • | ch Laboratory, NASA Lewi | s Research Center, organization | | | | 1.7 | | | 12a. DISTRIBUTION/AVAILABILITY S | TATEMENT | 12 | b. DISTRIBUTION CODE | | Unclassified - Unlimited | | | | | Subject Category: 37 | Distril | bution: Nonstandard | | | | | | | | This publication is available from the NASA Center for AeroSpace Information, (301) 621-0390. | | | | | 13. ABSTRACT (Maximum 200 words |) | | 10 10 10 10 10 10 10 10 10 10 10 10 10 1 | | This report describes the resi | ults of a research program to e | valuate structural usage mo | mitoring and damage tolerance | | | | | as operated by Petroleum Helicopters AA's Project HeliSTAR. The mission lights to provide pick up and delivery fatigue life calculations and damage al Elements (PSE's). The usage data of for a mission called the Gulf Coast more severe for the ASHM than the efits in extending retirement times or were considered. In addition to usage otential economic benefits and | | Diagnostics, violation measurement, memcopiers, neaturand usage monitoring | | | A04 | | 17. SECURITY CLASSIFICATION 1 OF REPORT | 8. SECURITY CLASSIFICATION
OF THIS PAGE | 19. SECURITY CLASSIFICATION | | Unclassified Unclassified Unclassified